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1. INTRODUCTION
RED is a programming language designed, in accordance with the DoD "SteeIman" requirements, for

DoD embedded computer applications. The language combines features common to most existing high
level languages with new capabilities for abstract data types, exception handling, multitasking, generic
definitions, and access to machine-dependent facilities.

1.1 DESIGN GOALS
The RED language has been designed to reducP the total life cycle cost of designing, implementing,

testing, and maintaining programs. For sma' and medium size programs, most modern high level
languages are similar. However, for large programs, such as those commonly developed for embedded
applications, the facilities provided by a language become crucial. What distinguishes the RED
language is that it makes it easy to express solutions to the problems encountered when developing
large programs. ( , 4 /

Although many factors are involved in judging program quality, four key properties that will
enhance the production of high quality programs have been specifically addressed in the design:

1) Modularity -- The program structure must be clearly modularized so as to facilitate design and
maintenance.

2) Abstraction -- It must be possible to write programs in terms of a variety of abstractions that
are appropriate to the application area, and in a notation that is in keeping with the style of the
notation used for language-provided abstractions.

3) Reliability -- Coding and integration errors must be minimized either by elimination of whole
classes of errors or by early detection.

4) Effectiveness -- The program must address the real problem and provide an effective solution.
Use of assembly language should not be necessary.

Modularity

Cost effective program development and maintenance requir-es a modular design. The RED
language provides a rich set of features for creating modules. Some of the kinds of modules
supported are:

procedures
functions
tasks
data structures
abstract data types
schedulers
multitasking synchronization schemes
common data pools

These modules may be nested within a translation unit or may be separately translated in support of a
large cooperative programming effort. Separate translation is provided as an integrated feature of
the language.

The RED language also permits modules to be generalized by the use of its generic facility. For
example, a sort procedure that sorts arrays with integer components can easily be generalized to sort
arrays with components of any type.
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Abstraction

The RED language allows existing language notations (e.g., operators) and features (e.g., the case
statement) to be extended to encompass application specific abstractions. Once an abstraction has
been writte., it may be used as if it were a built-in feature of the language. Although application
programmers may define their own abstractions (e.g. procedures and abstract data types), many
centrally defined facilities (e.g. lbraries, common routines and data, real time schedulers) will be
written by systems progr aaumers. For these kinds of abstractions, the language provides an extensive
set of advanced features intended mainly for use by systems programmers. Once an abstracton is
defined by a systems programmer, application programmers can use the abstraction without having to
understand the advanced features used in its implementation.

Although the presence of advanced facilities in RED increases the apparent complexity (if the
language, it actually decreases the complexity of the overall programming process. Application
programmers will be able to use more appropriate abstractions rather than having to work out less
effective and less maintainable solutions to their problems.

Reliability

The RED lan7uage is designed to aid the programmer in the production of reliable programs.
Particularly dangerous language features have been avoided. The language is fully type checked
including the interfaces between separately hanslated modules. Extensive checking for error
conditions is included; whenever possible, the checking is done during translation rather than at
runtime. Facilities are also provided for detecting and handling runtime errors. Assertions may be
specified at any ornnt in a program, as an aid to program verification and as a way of detecting
runtime errors. cases where efficiency is an overriding consideration, users can suppress the
generation of code fc- .ecting runtime errors.

The scope rule -ther with the capsule and expose declarations, allow users to completely
-ontrol the regions c program over which names are known.

Effectiveness

The RED language provides direct and convenient ways of dealing with real problems that have
traditionally been either difficult or impossible to handle within a high level language. This means that
users will not have to resort to assembly language to solve these problems. The RED language
provides:

1) Access to machine-dependent . features -- F-icilities include the ability to specify physical
representations, to access special memory addresses, to do hardware level I/O, and to handle
hardware interrupts.

2) Control over all aspects of multitasking -- Users can define their own schedulers and
synchronization schemes. Both multiprocessor systems with shared memory, as well as
distributed systems, can be supported.

3) Control over storage management -- Users can select a dlnamic storage management strategy
that is appropriate to their application. In particular, applications which require dynamic
storage management are not forced to pay the price of garbage collection, but can choose
alternative methods.
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1.2 SEMANTIC FRAMEWORK

This section discusses some of the key concepts which form the semantic framework for the RED
language.

Scope Rules

A program consists of a nested set of scopes. When a name is used, a local definition is
referenced if one exists; otherwise, a definition is sought for in enclosing scopes. There are two basic
kinds of scopes: open scopes and closed scopes. Closed scopes differ from open scopes in that
names of variable definitions in enclosing scopes may not be used unless they are explicitly imported.

A capsule is a scope with special properties. Definitions within a capsule are explicitly exported
to those scopes which expose the capsule. Capsules are also the unit of separate translation.
Definitions exported from one translation unit can be exposed in other translation units.

Immediate and Deferred Declarations

Declarations are divided into two groups: immediate declarations (e.g., a variable declaration) and
deferred declarations (e.g., a orocedure). Immediate Jeclarations are elaborated when they are
encountered, while deferred deciarations are elaborated i ,ly when they are explicitly invoked.

Deferred declarations may have parameters, may be overloaded, and may be generic; immediate
declarations may not.

Deferr.d declarations are closed scopes; immediate declarations are not scopes at all.

A body can coniain declarations as well as statements. In a body, any declaration can appear
before the statements; deferred declarations are also permitted to appear after the statements. All
compound declarations (i.e., those- containing bodies) are deferred declarations.

Types and Subtypes

Data items (e.g., variables) have two kinds of- properties: those which must be known during
translation (type properties) and those which must be known when a date item is created (constraint
properties). A type consists of a type name and the type properties. A subtype consists of a type
plus the constraint properties. The following are types:

INT
STRING[ASCII]
RECORDUC : INT,_ b : STRING[ASCIII]

The following are subtypes:

INT(1. .10)
STRING[ASCII] (5)
RECORDta : INT(O0..i), b:STRING[ASCII] (J)]

Note that type properties are always enclosed in [ ], while constraint properties are always enclosed
in ( ).

Subtypes are always specified for declared variables. For formal parameters and function results,
either a type or a subtype is specified. A formal parameter which specifies a type can have actual

------------------------------------------
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parameters with any subtype of that type.

Since types consist only of information known at translation time, all type checking (e.g., checking
that the type of an actual parameter is the same as the type of the corresponding formal parameter)
Is done during translation.- Types are compared by comparing their "extended name" (i.e., their
Identifier plus their type properties). Type checking does not involve structural equivalence (I.e.,
comparison of typet which are recursive).

In addition to the rich set of built-in types, users can also define their own types in one of two
ways: as "data structuies" or as "abstract types". A data structure is an abbreviation for a
composition of language types. For example,

ABBREV r : RECORD[a : INT(1..10),
b : STRING[ASCII] (5)];

VAR x : r;

is equivalent to

VAR x : RECORD(a : INT'(1..10),b STR,:G[ASCII] (5)];

An abstract type is a user-defined type (which is different from all other types) together with a set of
procedures and functions which operate upon data items of the type. For example, a user can define
a STACK type together with the PUSH and POP operations.

Multitasking

Concurrent elaborations are achieved via the multitasking facilities. Tasks are like procedures
except they are invoked by a task invocation statement to produce a task activation. Activations of
the task are elaborated concurrently with the invoker. Each activation of a task is named by a unique
activation variable.

The elaboration of multiple tasks is unde he control of a scheduler. In addition to a language
defined priority scheduler, users can also define their own schedulers. The particular scheduler that
Is used for a task activation is selected based on the type of its activation variable.

Task activations can communicate in two basic ways: via shared memory or via message passing.
Mutual exclusion over shared memory is achieved by datalocks (which are basically boolean
semaphores) and a region statement. Message passing is supported by mailboxes (which are basically
a queue of messages). A multiway wail statement is available which permits users to receive a
message from any one of several niailboxes. Multiway waits on sending of messages are also
provided. If there are several activations wailing to enter a region with some data lock, or to send a
message to a mailbox, or to receive a message from a mailbox, they are queued in first-in first-out
order.

Users can define their own synchronization schemes. This can be achieved either by defining
these schemes based on datalocks or mailboxes or by way of the low-level multitasking facilities.
Low-level multitasking facilities include latches (which are basically spin-locks) together with a
standard set of low-level operations which are used to describe scheduling, region statements, and
multiway waits. One important property of user-defined synchronization is that a particular scheme
can be defried independent of any particular scheduler (i.e., it can be used without modification with
any scheduler). Timing facilities are also available for measuring times or delaying based upon either

I
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real time or activation time: (i.e., tf.e total time some activation has actually been running).

Generics

Any deferred declaration can be generic. A generic declaration is a generalized form from which a
collection of different instances of the declaratior. can be derived. These instances are produced
during translation. Instances differ in the values of a set of generic parameters. Generic parameters
may be types, functions, procedures, tasks, or manifest values.

Generics are used to generalize a particular deferred declaration. For example, a generic sort
procedure can sort arrays with components of any type. A generic stack type includes stack types
which can have a component type (e.g., STACK lINT], STACK [STRING [ASCII]). A generic
Integrate procedure can integrate any function, for example, from floats to floats.

Generic declarations allow the user to write a single definition which is specialized (i.e.,
instantiated) during translation for several specific uses, rather than having to write a separate
definition for each of the separate uses.

1.3 PROGRAMMING CONSIDERATIONS

The characteristics of the RED language discussed above represent a solution to the problem of
providing a standard language for military software production, one that can serve all applications
with-ut ignoring the special requirements of each. The solution presented here is based heavily on
the data abstracticn capabilities that permit the same language to be 'specialized as needed, but in a
form that is invisible to the applications programmer and, perhaps more importantly, to the
maintenance programmer. Chaiges required can be implemented in terms of underlying definitions so
that most often programs need not be changed at all in order to operate differently. Such underlying
modifications can, further, affect many applications programs, so that the maintenance effort is
substantially reduced along with maintenance costs.

In order to provide comprehensive support within the context of one high-level language, the RED
language necessarily includes complex features that will neither be needed or necessarily understood
by all programmers. By separating out these complex features, it has been possible to retain a core
of basic programming facilities that are similar to most other languages and, thus, easy to learn and
use, yet flexible enough so that sophisticated applications can be expressed using only these basic
facilities.
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1.4 OVERVIEW OF THE LANGUAGE REFERENCE MANUAL
This LRM is divided into four major parts:

GREEN (Chapters 1-7) - Basic Language Features. The features described here will be
needed by all users. This part of the language Is roughly equivalent to the
PASCAL language. Simple programs can be written using only these features.

YELLOW (Chapters 8-1 1) - Intermediate Language Features. The features descrilted here
will be needed by most users.

RED (Chapters 12-14) - Advanced Language Features. The features described here
are provided mainly for use by systems programmers, rather than by application
programmers.

BLUE Appendices, Index.

"the division into basic, intermediate, and advanced parts is only approximate. Although most
features described in a chapter belong in the part in which the chapter is placed, some features
discussed may conceptually belong in some other part. For example, the type declaration is
intermediate rather than basic, some aspects of the use of generics are advanced rather than
intermediate, and definition of operators is intermediate rather than advanced.

1.5 MANUAL LAYOUT
This document is a language reference manual, designed to provide the user with a complete

description of the format, usage and effects of all language features. Basic lexical elements of the
language are described first (Chapter 2). Subsequent chapters present the various language
constructs.

Each section of the manual follows the same basic five-part form given below, although any of the
five parts may be omitted when it is not applicable.

1) Diagrams - A flow diagram format (described in Section 1.6) is used to specify the form for
lexical elements and the syntax for language constructs.

2) Informal Descrip"on - The text immediately following the diagrams informally describes the
purpose, use and meaning of the lexical element or language construct.

3) Rules - The heading RULES indicates that the following text gives rules completely defining the
meaning of the lexical element or language construct, that are not already given by the syntax.

4) Notes - The heading NOTES indicates that the following text describes how the lexical element
or construct interacts with other parts of the language. Rules from other sections, which are
relevant to this lexical element-or construct, may be summarized.

5) Examples - The heading EXAMPLES precedes sample coding sequances that illustrate the various
valid forms of lexical elements or the use of language constructs.

1.6 FLOW DIAGRAMS

Flow diagrams are used in this manual to specify all the forms of a single lexical element or
language construct. By tracing a path through a diagram, an instance of the element or language
construct represented by that diagram may be produced. There is a path through a diagram for every
valid instance. These diagrams, together with the rules, provide a complete description of the
language. Rules for interpreting these diagrams are given below.
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1.6.1 FLOW DIAGRAMS FOR LEXICAL ELEMENTS

f

RULES

1) Each d.agram defines the forms for a particular lexical- element (see Chapter 2). The name of
the element being defined appears in the oval, (, at the upper left of the diagram.

2) The diagram identifier the letter in the upper right hand corner, @. is associated with this
specific diagram. An index of diagram identifiers may be found in Appendix F . In the example
illustrated, the syntax diagram defines all possible forms of an identifier token.

3) Boxes with circular ends, QV, represent lexical elements or characters from which they are
constructed.

4) If the rounded box represents an element defined in another syntax diagram, a letter above the
rounded box is the diagram identifier associated with that element.

5) To generate forms of the element, the diagram is followed from left to right, from box to box,
startin at the point of the junction of the definition box, ( ), and ending when the end of the
path, (),is reached.

6) When, in following a diagram, a black dot, ®, is reached, any of the paths leaving the dot may
be followed.

7) It is not legal to "back up" along a convergent path, ( .
8) When a box is encountered, the element it contains is added to the right o; the preceding

element. For example, the path shown by the dotted line, @Q/, generates the sequence "letter
letter underscore letter"(e.g., ABC).
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1.6.2 SYNTAX DIAGRAMS FOR LANGUAGE CONSTRUCTS

statement

_ .identifier nule e nt

The diagrams defining language constructs are similar to those for lexical elements with the
following differences:

1.) The name of the language construct being defined appears in a rectangular box, (1), in the
upper left-hand corner. The illustrated example defines the syntax of a statement.

2) The diaRram identifier, ®, for language construct diagrams is an integer. An index of diagram
identifiers may be found in Appendix F.

3) Boxes with circular ends, such as, @, represent lexical elements; reserved words appear in
capital letters. A letter above the box, (A identifies the diagram In which the element is
defined.

4) Rectangular boxes within the diagram, such as Up, represent language constructs defined
elsewhere. If a number appears above the box, the construct is defined in the diagram
identified by that number.

5) Following a path through a grammar syntax diagram produces an instance of the construct.
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2. LEXICAL STRUCTURE
2.1 CHARACTER SET AND TRANSLATOR INPUT

Programs are composed of any sequence of characters from the 95-character ASCII or basic
55-character set. Any program can be written using only the 55-character set given below. Rules
for converting from the 95-character ASCII set to the 55-character set are given In the description
for specific tokens and token separators.

RULES

No distinction is made between upper and lower case letters except within a string UterdL

Basic 55-Character Set

0123456789

ABCDEFGHIJKLMNOPQRSTUVWXYZ_

95-Character ASCII Set

All characters in the basic 55-character set plus

.. $[% 1-
abcdefgh ijknlmnopqrstuvwxyz

NOTES

This document uses the 95-cheracter ASCII set to dtscribe the isngut.
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2.2 TOKENS AND TOKEN SEPARATORS

token

Nspecial symbol--

token
separator

A token is the basic component used to build all constructs of the language. It Is an indivisible
lexical unit that is interpreted as a complete 'word' by the translator. A token separator Is required in
some cases between tokens and can be used otherwise to improve readability. A token or token
separator is composed of a contiguous sequence of characters.

RULE$

Input text is organized into le each of which is composed of tokens and token separators. No
token or token separator can extend over more than one line of text. An end of line, eol, is a token
separator.

A token separator must appear between any two adjacent tokens, unless one of the tokens is a
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special symbol or an operator symbol (such as <)which does not have the form of an Identifier (e~g.,

AND). Ona or more token separators may appear between any two tokens.

EXAMPLES

PERSON.WOMAN.ADA
NOT A - % token separator required
F ( A : INT )
F(A:INT);
END CASE % token separator required
WHEN A=> % token separator required

2.3 TOKENS

2.3.1 RESERVED WORDS

Reserved words have a fixed meaning within the syntax of the language.

RULES

The following are reserved words:

ABBREV END LOCATION RENAMING
ABNORMAL EXCEPTION NAMED REP
ALL EXIT NEEDS REPEAT
ALLOC EXPORTS NEW RERAISE
ASSERT EXPOSE NONE RETURN
BEGIN EXTERNAL OUT SUBTYPE
BY FOR OF TASK
CAPSULE FROM PRAG THEN
CASE FUNC PROC TO
CONST GENERIC PTR TYPE
CREATE GOTO RAISE VAR
DO GUARD READONLY WAIT
ELSE IF REVERSE WHEN
ELSEIF IMPORTS REGION WHILE

NOTES

Reserved words may not be redefined.

No distinction-is made in the use of upper or lower case characters in a reserved word; thus, end, End, END, end enD are all
equivalent.
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2.3.2 OPERATOR SYMBOLS

Operator symbols are names of functions which are invoked with a special prefix or infix syntax
(see Section 5.2).

RULES

: The operator symbols are:

** exponentiation
*9, / multiplication, division
DIV, MOD integer division, modulo
+, - addition, subtraction, prefix plus and minus
& concatenation
=, /=, >, >=, (, <= relations
IN set membership
OR or (set union),
XOR exclusive or (set symmetric difference)
AND and (set intersection)
NOT logical negation (set complement)

NOTES

The definition of operator symbol names is discussed in Section 132.

2.3.3 SPECIAL SYMBOLS

Special symbols are tokens which have special meaning in the syntax.

RULES

The table below lists the special symbols and their uses.

* component selection, attribute inquiry
( ) parenthesization, subscripting, parameter lists
[ ] type properties, translation time properties, constructors
, list separation

name separation, goto labels
* statement terminator, end of compound

declaration headers
= > alternative indication, function result

ranges
constant resolution

S-- assignment

All of the special symbols, except C, J, and #, consist of characters exclusively from the 55-character
set. The following 55-character alternates are provided.

<< 55-character form of [
>> 55-character form of I

55-character form of #
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2.3.4 IDENTIFIERS

(Ietfier*)

An identifier is a namre which is associated with a language construct by a definition (see Section

3.5).

RULES

Reserved words and operator symbols (e.g., AND) may not be used as identifiers.

All characters In an identifier, including underscore, are significant.

NOTES

No distinction is made in the use of upper or lower cost charecters in an identifier (agt., Abc, abc, and ABC are all equivalent).

EXAMPLES

TH IS...IS-AERY..LONG-NAME
This-s.avery-l.ong-name % same as above
VELOCITY
UNIT-01
REAR-UNI-0 1
THIS-S...LLEGAL % two underscores together
AS-.IS..TiIS.. % illegal
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2.3.5 LITERALS

EQO
I i era I mt literal

F
floa, literal

Literals are used to specify values for some built-in types and for user-defined indirect types (see
Section 4.4.3).

RULES

The values of all literals are known at translation time.

The rules for resolution of the type and subtype of a Literal are described In Section 5.7.

NOTES

The following sections describe specific fifere/s. Uier-dofined litirels, which ors, tanjusjo, constructs rather thin tokens, are
described in Sections 5.7 and 135.
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2.3.6 NUMERIC LITERALS

lI tera I

digit

Numeric literals specify integer values for the IT type and floating point valus for the FLOAT

type.

RULES
A floating point literal in E form is interpreted as the decimal number times ten to the integer

value following E. The default precision of a floating point number is the number of digits preceding

E, minus any leading zeros to the left- of the decimal point.
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NOTES

Numeric Literals are always positivo values. A negative literal is obtained by preceding the literal with the prefix minus

operator. This operation is performpd At translation time.

Because a float literal is a token, blank* may not appear within the float literal.

The precision of a float literal is first determined by context and, if that is not sufficient, the default precision is u ecd (Ae"

Section 5.7).

No distinction is made in the use of upper or lower case e in a float literal.

EXAMPLES

% integer literals
0
2354

% floating point literals
3.6E7 % default precision 2
1.0E5 % default precision 2
7.25 % default precision 3
6.324e-6 % default precision 4
0.0 % default precision 1
0.012 % default precision 3

2.3.7 ENUM LITERALS

enuet
literal

C

An enun literal specifies a named'value of an enumeration type.

LOTES

The *ame enumeration literal may appear in several enumeration types. For example, the enumeration literal 'ORANGE may
appear simultaneously in the ENUM types FRUIT and COLOR.

Because an enre literal is a token, no blank may appear-between the apostrophe and the Identifier.

Because the entmu literal is distinguished by an apostrophe, the Identifier following the apostrophe may be defined In the same
scope (i.e., RED may be the name of a variable in the same scope in which 'RED is an entu literal).

The language views a character set as an enumeration type, where each character corresponds to an einm literal.
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No distinction is made in u,,e of upper or lower case (91, 'RED, 'Red, 'rd and 'reD are all equivalent).

EX AMPLES

' RED
'POSITIVE
'ACTIVE
'LEFT-ALIGNED
'Right-A1igned
'RED' % illegal closing apostrophe
14TH % illegal character beginning identifier

2,13.8 STRING LITERALS

string
literal

A string literal specifies a value of a STRING type. A string is a sequence of characters. Each
character is an enumeration literal. If a string includes only those characters in the 95-character set,
the special literal form, string literal, can be used. A string titeral is considered to be a shorthand
form for the concatenation of characters defined by enuin titera~s; e.g., "ABC" is considered a
shorthand form of

'A & 'B & 'C

RULES

is the 55-character form of "
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NOTES

A string literal m;,y not vlond over one line. If an and of line is found before the terminating quoit, the strinC lite3ral token Is

terminated and an error moatiage is iceued. Ths 1i infix operator can be used to obtain a long sting by concatenation.

Upper or lower ccao characters are distinguished in strings; e.g., "ABC* is not equivoeent to "ebc" All characters In the
95-characti ASCII set hirve a correspondin~g snumtration li:ral (defined in Appendix C.15). For example, since 'Ibracket Is the
eniumerationi litoral for I and 'number the enumeration literal for a, the string

"CAMB"

Is equivalent to

1ibracket & "All & 'number &"B" & 'rbracket
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EXAMPLES

% creating a string too long for a single line

"VERY... LONG. ..STRING"
& "REST OF VERY LONG STRING*

% placing carriage return and line feed
% at the end of a string

"ONE LINE" & ICR & 'LF
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2.3.9 BOOLEAN LITERALS

boolean
I iter" I

TRUE

FALSE

A boolean literal specifies a value of type BOOL

2.3.10 INDIRECT LITERAL

The indirect literal NIL specifies that value of an indirect type (see Section 4.4.3) which points to
no dynamic variable.
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2.4 TOKEN SEPARATORS

I' 2.4.1 COMMENT

cowpent

A comment provides program documentation.

RULES

A comm~ent is terminated by the end of the line on which it appears. Comm~ents are Ignored by
the translator.

2.4.2 PRAGMAT

pralmat
token
separator

pragmats supply information to the translator which does not affect language semani~tcs. Pro.gmats
are described in Appendix 8.
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3. PROGRAM STRUCTURE
3.1 PROGRAM

tro I a io

capsule declarationr 54 .........

A program consists of one or more translation units which may communicate with each other.
Each translation unit is a capsule declaration. Capsule declarations may also be nested within
translation units and are described more generally in Chapter 8. A capsule declaration consists of a
header, a body, and an ending. The header names the capsule and provides an exports list that makes
definitions within the capsule available to other translation units. The body consists of a sequence of
declarations, statements, and assertions. Declarations provide definitions for names, statements specify
actions to be performed, and assertions specify conditions that are to be true at the points where the
assertions appear. The ending terminates the text of the capsule declaration.

The intent of a program is realized by elaborating the program. The notion of elaboration is
meant to provide a general way of describing closely related translator functions, such as execution
for statements and evaluation for expressions. Elaboration can apply to statements, assertions,

declarations, and expressions, and includes translation-time as well as execution-time activities. The
elaboration of a compound syntactic unit is defined in terms of the elaboration of its constituent units.

In the simplest case, a program consists of just one translation unit. The invocation, initiated by
the programming system, consists of elaboration of the body of that unit. When there is more than
one translation unit, the user must select (via the programming system) a particular one to be Invoked
as the main capsule.
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CAPSULE prime EXPORTS NONE;
CONST max := 100;
% this prog~bm prints all prime numbers that are
% less than or equal to max

VAR numbers :ARRAY INT(2..max) OF BOOL
:= 2..max : TRUE];

FOR i INT(2. .max) REPEAT
IF numbers(i) THEN

VAR j :INT(2*11 .. max~i) :~2*1;
WHILE j <= max REPEAT

numbers(i) := FALSE;
j :=J+i;

END REPEAT;
END IF;

END REPEAT;

OPEN (SYS-OUT, "TTY"1, 'NEW)
WRITELN ("PRIME NUMBERS");
FOR i: INT(2. .nax) REPEAT

IF numbers(1) THEN
WRITELN (11);

END IF;
END REPEAT;
CLOSE (SYS-..OUT, 'SAVE);

END CAPSULE prime;
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3.2 BODYI.

body

bobod el@

element

4

%assertion 

4-

statement

A body consists of a sequence of body elements, each of which is either a declaration, a-statenent,
or an assertion. A body is used where a related sequence of body elements must be -treated as a unit.
Statements and declarations that can contain bodies are known as compound statements and ompaund
declarations. For example, one possible form of an if statement is:

IF expression THEN bodyl ELSE body2 END IF

In this example, bodyl and body2 specify the actions to be taken after elaboration of the expression
yields true or false, respectively. Depending on the bodies given, the actions may range from
elaboration of a single element to a complex sequence of actions.

Empty bodies are permissible; this is useful when no action needs to be tahen.
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RULES

An immediate declaration (see Section 3.3) must precede all statements. A deferred declaration

(see Section 3.3) or generic declaration (see Section 11.3) may either precede or follow all statements.

Elaboration of a body consists of the elaboration of all body elements other than deferred and
generic declarations. The elements are elaborated in the sequence in which they are written, unless
control Is transferred by an exit, return, or goto statement.

NOTES

A body is an open scope (see Section 3.5). Declaraions and Soto label$ 6ef in names within a body.

An assertion may appear ot any point in the sequence of body elements since If may be useful before or after either a
dedaratlon or a statement.

Since deferred declarations and 8enerkc declarations are sometimes quite long, placing them after the statements often makee a
program more readable. Placement of deferred deder/tions can be determined by programming standards and style considerations.
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3.3 DECLARATIONS

declaration vareiale declaration

deferreddabbcev ration

declgeatri declaration

c4ldaelartioJ.
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~48

I 0' . caouledeclaration

immediate declarations are elaborated when ecountered during the elaboration of a body. Deferred

decarations en eaorefwhen first encountered; instead, they define deferred units which are

elabratd oly hen nvoed romelsewhere.

A geericdeclratin stndsfor a collection of deferred decLar~eip.on and, therefore, is not
eaoraedeSection 11). for a discussion of generics.

Allfecaratins ewefe neame and deferred declarations are listed below.

Immediate declaration Deferred declaration

elaborated when e icountered elaborated when invoked

can not have parameters can have parameters (7.3)

must appear before statements can appear either before or
after statements (3.2)

can not be overloaded explicit overloading is permitted for

all except types
(11.2)

can not be generic can be generic (11.3)

can not have a translation can have a translation time
time property list property list (11.1.2)

are not compound includes all compound declarations

are not scopes are closed scopes(3.5)
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Deferred declarations and their characteristics are summarized below.

Declaration Invocation Effect of Invocation

procedure (7.1) procedure invocation performs some action
statement

function (7.2) function invocation produces a value
primary

task (10.1) task invocation an activation of the task
statement is elaborated concurrently

capsule (8.1) capsule invocation makes exported definitions
declaration visible

abbreviation (4.4.1) abbreviation produces an abbreviated
invocation type or subtype

type (4.4.2) user-defined subtype produces a subtype of
a user-defined type

EXAMPLES

1) Immediate declarations.

VAR flag : BOOL := TRUE;

CONST pi := 3.14159;
EXCEPTION stack-underflow, stackoverflow;
EXPOSE ALL FROM compool;

2) Deferred declarations.

ABBREV max-int : INT(min..max);

TYPE complex (nm : FLOAT) : RECORD[r,i : FLOAT(10, n..m)];

PROC complex-complement (VAR x : complex);
x.i :=-x.t;

END PROC complex-complement;

FUNC even (i : INT) => BOOL;
RETURN (i MOD 0) 0;

END FUNC even;

TASK reader;

END TASK reader;

CAPSULE compool EXPORTS ALL;

% variable declarations

END CAPSULE compool;
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3) Generic declaration,

GENERIC t : TYPE NEEDS := (t,t); % needs assignmentI. % operator
% swap.-for any type 

% oeao

PROC swap(VAR a,b : t);
CONST c := a;
a := b;
b c;

END PROC swap;

3.4 ASSERTIONS

assertion

An assertion specifies a condition which will be true when the assertion is elaborated. Assertions
are used to make programs easier to read and maintain, to provide Information useful to an optimizing
compiler, and to provide checkpoints for formal and informal verification of correctness.

RULES

The expression must have type BOOL. Elaboration of an assertion consists of testing the value of
the expression and, if the expression is false, raising the X.ASSERT exception.

NOTES

An assertion does not necessarily imply runtime checking. If the condition can be checked during translation, then-object code
need not be generated for it If an asserlon is known to be false at translation time, a warning is Issued. A pregmat is available for
suppreuing the XASSERT exception (see Appendix B).
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EXAMPLES

FUNC sqrt (a :FLOAT) => FLOAT;
ASSERT a > 0.0;

END FUNG sqrt;--

PROC full-,.divide (a,b : INT, OUT c,d :INT);

ASSERT 0=~0 AND b>0;

VAR x :INT(0..a) 0;
VAR y : INT(0..a) ::a;

ASSERT b*x+y =a;

P WHILE y >= b REPEAT
ASSERT b*x+y =a;
x :~x+1;
y y-b;

END REPEAT;

ASSERT (b*x+y =a) AND y~b;

C X

d y

ASSERT (b*c+d =a) AND 0<=d AND d~b;

END PROC full-divide;
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3.5 NAMES AND SCOPES

A name is either an identifier or a definable symbol (see Section 13.2). Definable symbols are

used only to refer to built-in operations or to functions and procedures that provide additional

definitions for built-in operations.

Every use of a name must have a corresponding definition definitions of names are never created

by default. There are several forms of definition, including declarations, formal parameters, and goto

labels. A name may have more than one definition; when this occurs, it must be possible to associate

each use with the appropriate definition. The association is governed by the scoping rules.

A scope' is a syntactic form in which names may be defined. An open scope is a scope in which all

definitions in the enclosing scope are known, provided that those definitions do not conflict with a

local definition of the open scope. A closed scope differs from an open scope in that matching

identifiers (the t, get of an exit statement) and goto labels (see Section 6) from the enclosing scope

are never available and variables from the enclosing scope are available only when explicitly listed in

an imports list.

RULES

All deferred declarations (see Section 3.3) are closed scopes. Bodies (see Section 3.2), compound

statements (see Section 6), and generic declarations (see Section 11.3) are open scopes.

Everything in one scope that is outside any scope contained within it, is called local to that scope.
For all non-deferred definitions, two definitions are considered to conflict if the same nme is
associated with both. Conflicting definitions local to the same scope are not permitted. Deferred
declarations with the same name do not necessarily conflict (see Section 11.1).

The definitions which are known in a scope are:

a) all local definitions; and

b) each definition which is known in the enclosing scope, is available, and does not conflict with a
local definition.

For open scopes, all definitions known in the enclosing scope are available. For closed scopes, all

definitions known in the enclosing scope are also available, with the following two exceptions:

a) goto labels and matching identifiers; and

b) variable definitions, that are not.explicitly imported (see Section 3.7).

Any occurrence f a name other than a defining occurrence is a use of that name. A use of a
name which is local some scope must correspond to a definition which is known in that scope. Each
use must correspon., to exactly one definition. For names other than names of deferred units, at most
one definition of a name will be known in each scope.
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NOTES

Definitions which are exposed in a scope (see Section 8.2) are considered to be local definitions of that scope.

Uses of names local to some scope are uniformly associated with definitions; is., the definition associated with a particular use
is the same, no matter where within the scope that use occurs.

Conflicting dofinitions of a single name can exist in different scopes without restriction. Conflicting definitions of a singi
name within a single scope are excluded since this would make it impossible to associate each use uniquely to a single definition.

A definition may be any of the following: a decloration (see a3), a formal perimeter (so 7.3 ), a toto label (see 8), the index
of a repeat stotement (see 6.5), a matching ideatifier (see 6), a formal parameter (see 7.3), a gener parameter (see 11.3), or a
needed name (see 11.4).

EXAMPLES

sample BEGIN % definition 1
VAR a, b : INT(1..10); % definition 2 and 3
CONST c := 4; % definition 4

BEGIN
% begin statement is an open scope
VAR b : BOOL; % definition 5

...sample... % refers to definition 1

...a... % refers to definition 2
.b... % refers to definition 5
c ... % refers to definition 4

...p... % refers to definition 6
... x... % illegal

END;

PROC p (VAR x : INT); % definition 6 and 7
% procedure is a closed scope

... sample... % illegal

.. .a... % illegal

...b... % illegal
c ... % refers to definition 4
p ... % refers to definition 6

...x... % refers to definition 7

END PROC p;

END sample;
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3.6 FORWARD REFERENCES TO NAMES
Use of a variable or constant name 'efore it has been created is not permitted.

RULES

No use of a name defined as a variable or constant can appear before its definition.

A deferred unit is said to require a variable or constant if it either contains a use of the name of
the variable or constant or contains an invocation of some other deferred unit that requires that
variable or constant. No invocation of a deferred unit that requires a variable or constant may appear
before the definition of that variable or constant.

NOTES

Forward references to deferred definitions, goto labels, and exceptions are always allowed.

EXAMPLES

1) Legal forward reference to a deferred declaration.

BEGIN
P;

PROC p;

END PROC p;

END;

2) Correct uses and incorrect forward references to immediate declarations.

VAR a : INT(1..10) b + 3; % incorrect, b t,,3; not beer
% elaborated

VAR b : INT(I..5) := 2; % correct
VAR c : INT(1..20) b; % correct, h has beeo lokwwtt- i
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3.7 IMPORTS LIST

irports

C-C
READONLY identifier

A compound declaration (procedure, function, task, or capsule) may include an imports list. The
imports list specifies that certain uariables, known in the enclosing scope, are to be made available in
the compound declaration. A variable imported into a compound declaration can be restricted so that
It cannot be modified inside the compound declaration.

RULES
. Every name in the imports list of a compound declaration must be associated ;with a variable

definition (see Section 4.2) known in the immediately enclosing scope.

If ALL is specified, all variable definitions which are known in the enclosing scope are available to
the compound declaration (see Section 3.5).

If a list of names is specified, the definitions associated with those names are available to the
compound declaration.

If READONLY precedes a name, that variable is treated as a readonly data item within the
compound declaration (see Section-4.2).
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NOTES

Abbreviation declarations and type declarations are deferred declarations and, thus, are closed scopes. Neither declaation can
include an import list so variables from the enclosing scope may not be used within either of the$e declarations.

A closed scope which imports ALL is, essentially, en open scope except that goto labels and matching identifiers are not

svailable.

EXAMPLES

sample BEGIN

VAR a,b : INT(0..10);
CONST c 4;

PROC pl;
% known = c, pl; p2, p3

END PROC pl;

PROC p2 IMPORTS a, READONLY b;
% known = a, b(as readonly), c, pl, p2, p3

END PROC p2;

PROC p3 IMPORTS ALL;
% known = a, b, c, pl, p2, p3

END PROC p3;

END sample;
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4. TYPES
4.1 TYPES AND SUBTYPES

Types and subtypes are used to specify the properties of dat- items. These properties control
both the values that a data item may have, and the operators, functions, and procedures that may be
applied to it.

Data properties may be divided into two groups: type properties, which must be known during
translation; and constraint properties, which need not be known during translation, but which must be
known when a data item is created. The type of a data item is the collection of all type properties.
The subtype of a data item is the collection of all properties, both type and constraint properties.
The subtype of a data item is said to belon to its type. Typically, many subtypes, each with a
different set of constraint values, will belong to the same type. The two most common constraints on
types are range constraints (which limit the range of values of data Items having the subtype) and size
constraints (which specify the size of data items having the subtype).

EXAMPLES

1) Types

INT
FLOAT
STRINGEASCIII

2) Subtypes

INT(1 .. 10)
FLOAT(5, -100.0 .. 100.0)
STRINGrASCII] (5)

4.1.1 USE OF TYPES AND SUBTYPES

A subtype must be specified wherever a data item is to be created, such as a variable declaration.
A type or a subtype must be specified for each formal parameter. Invocation of a deferred unit with

formal parameters is permitted only if the type of each actual parameter is the same as the type
specified (or the type to which the specified subtype belongs) for the corresponding formal parameter.
Verifying that types are the same is called -type checking; since types consist only of properties that
are known during translation, all type checking is done during translation (see Section 4.1.5).
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EXAMPLES

VAR i : INT(t..10);
VAR s : STRING[ASCIIJ (5);

p(s); % Illegal- type of s is not INT

PROC p (x : INT);

END PROC p;

PROC q (x : INT(1..10));

END PROC q;

4.1.2 SPECIFYING TYPES AND SUBTYPES

For some types, the only type property is their name. Examples are:

BOOL
INT
FLOAT

Other types require additional properties. These properties, for all types but arrays, are given in a
comma-separrited list enclosed in square brackets, called the type property list. For example,

ENUME'a, 'b, 'c] % values of an enumeration type are always
% known at translation time

is an enumeration type for the values 'a, 'b, and 'c

When no additional constraints are needed on a type at the time of data creation, the subtype
specification of the data looks the same as the type specification of the data. For example,

BOOL
ENUM['a, 'b, 'c] % a variable of this subtype may take all listed

% values

When additional constraints are needed, they are specified in a comma-separated list enclosed in
parentheses, called the constraint prolerty list. For example,

INT(..10) % a single range constraint
FLOAT(10, 0.0 .. 50.0) % 2 constraints, precision and range
ENUME'a, 'b, 'c] ('a .. 'b) % a variable of this subtype may only

% take on the constrained range of
% values
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In some cases, the properties of a type may themselves include types. For example,

RECORD[a : INT, b : BOOLJ
STRINGEENUM'a, 'b, '03 % the characters of which a STRING is

% composed must be known at
% translation time

This nesting allows types to be constructed based upon other types. For example,

RECORD[a : INT,
b : UNION[w : BOOL,

x,y : RECORD[m,n : FLOAT],
z : ENUM['red, 'green]],

c : ENUM['yes, 'no, 'maybe]]

Subtype constraints are specified by placing constraint property lists after the type and any types
contained withir the type. For example,

RECORD[a : INT(-5..5), b : BOOL]
STRING[ENUM['a, 'b, 'c] ('a .. 'b)) (10) % this is a string

% of length 10 made up
% only of A's and B's

Array types and array subtypes are written in a special form. For example,

ARRAY INT OF FLOAT % a one-dimensional array type.
ARRAY INT, ENUM['a, 'b, 'c] % a two-dimensional array type

% where the first dimension
OF FLOAT % is subscripted by integers

% and the second by enum% literals.

ARRAY INT(1..10) OF % a one-dimensional array
FLOAT(10, -5.0 ..5.0) % subtype.

ARRAY INT(I..10), ENUM['a, 'b, 'c] % a two-dimensional array
OF FLOAT(10, -5.0 .. 5.0) % subtype where the first

% dimension has size 10 and
% is indexed by integers
% and the second has size 3
% and is indexed by enum
% literals (e.g, x(5, 'b))

RULES

When a specification which could'be either a type or a subtype (e.g., BOOL or ENUM[t a, 'bJ) is
used in a context where either a type or a subtype is permitted (e.g., for a formal parameter), the
specification is interpreted as a type.



40 Section 4.1.2 RED LRM 8 March 1979

EXAMPLES

VAR x ENUM('a, 'b]; % ENUM'a, 'b] is a subtype

PROC p(x : ENUMPa, 'b]); % ENUM['a, 'b] is a type

END PROC p;

PROC q(y STRING[ENUM['a, 1b]] (5));% ENUM['a, 'b] is a subtype

END PROC q;

4.1.3 RELATIONSHIP BETWEEN TYPES AND SUBTYPES

Given a subtype, the type to which it belongs can be found by deleting all constraint property lists.
For example,

Sub type Type

BOOL BOOL
INT(O..10) INT
ENUME'a, 'b, 'cJ ('a .. 'b) ENUM['a, 'b, 1c
RECORD[a : INT(-5 .. 5), RECORD[a : INT,

b : BOOL] b : BOOL
STRING[ENUME'a, 'b, 'c] STRING[ENUM['a, 1b, 'c]

('a .. 'b)] (10)
ARRAY INT(I..10), ARRAY INT,

ENUM'a, 'b, 'c ENUM['a, 'b, 'c
OF FLOAT(10,0.0..100.0) OF FLOAT

4.1.4 LANGUAGE-DEFINED AND USER-DEFINED TYPES

The language defines a flexible and useful set of types. These types are summarized in Section
4.3. Detailed rules are given in Appendix C.

In some cases, type and subtype specifications will be quite long. For this reason, a convenient
abbreviation facility is provided (see Section 4.4.1). Users can also define the abstract types which
are specifically needed for their applications. This capability is provided by the type declaration (see
Section 4.4.2) together with the capsule declaration (see Chapter 8).
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4.1.5 TYPES, TYPE EQUIVALENCE AND TYPE COMPARISON
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type

I
comparison

Tve ecuivalence rules are used to determine if two types are the same. Type checking Is the
comparison of two types using the type equivalence rules. Types are checked implicifly for
assignment (see Section 6.1) and for invocation of deferred units (see Section 3.3). Types are checked
explicitly for type comparisons. All type checking occurs at translation time.

RUJLES

Identifier I must be the name of a built-in type. The abbreviation invocation must produce a type.

Identifier 3 must be associated with a generic parameter that has a typo ganarric cortraint (see
Section 11.3.1).

Type Comparison

The result of elaborating a type comparison is a boolean which is true if type 5 is the same as
type 6.

To determine if two types are the same, the types are first expanded and then compared.

A type is expanded in the following cases:

a) If the type contains any abbreviation invocations (see Section 4.4.1), each abbreviation
invocation is replaced by the type which is the result of the invocation.

b) For record or union types, any components of the form

compl, comp2, ..., compi : type

are replaced by
compI : type,
comp2 : type,

compi : type

c) Any TYPEOF forms are replaced by their result type (see Section 4.5.2).

d) Any references to type generic parameters are replaced by their replacement elements (see
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Section 11.3.1).

Two expanded types are the same if they meet the following requirements when compared:

a) corresponding type identifiers within the expanded types refer to the same definition;

b) the values of corresponding properties in type property lists are the same;
c) for ARRAY types, the corresponding index and component types are the same; and

d) for RECORD. and UNION types, the component names are the same end occur in the same order.

NOTES

Built-in types are described in Section 4.3 TYPEOF is described in Section 4.5.2.

Type checkint is simplified by the fact that all indirect lypes ere new types and, thus, not expended into their underlying
types. This means that type expansion does not result in cycles.

EXAMPLES

1) Expanding abbreviations

ABBREV a : BOOL;
TYPE b : BOOL;

VAR m a;
VAR n b;
VAR o BOOL; % the types of m and o are the same but both

% are dlf'.rent from the type of n

2) Expanding components
VAR a : RECORD[x,y : INT(1..10)];
VAR b : RECORD[x : INT(5..8),

y : INT(12..15)]; % the types of a and b are
% the same since round
% bracketed information
% is removed to obtain
% the type.

VAR c : RECORD[y,x : INT(1..10)J; % the type of c is not the
% same as the type of a,
% since component names
% are in a different
% order.
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4.1.6 SUBTYPES, SUBTYPE EQUIVALENCE AND SUBTYPE COMPARISON
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Subtype equivalence rules are used to determine if two subtypes are the same. Two subtypes can
be explicitly compared for equality using a subtype compasorn.

RULES

Subtypes

Identifier I must be the name of a built-in type. Abbreviation invocation I must produce a UNION
subtype with no subtype constraint. Abbreviation invocation 2 must produca a subtype. Identifier 4
must be associated with a generic parameter that has a subtype generic constraint (see 11.3.2).

Subtype Comparison

The result of elaborating a subtype comparison is a boolean which is true if- subtype 6 is the same
as subtype 7.

Two subtypes are the same if their types are the same and If the values of the corresponding
constraints in the constraint property lists are equal. Subtype comparison Is only permitted for
subtypes whose constraints have types for which = is defined.

Built-in types are described in Section 4.3. SUBTYPEOF and INOEXOF are described in Section 4.5.1.

Subtypes are compared for equality at translation time whenever possible, otherwise, comparison will be performed at runtinw.

Two sublypen are implicitly compared for equality when en actual parometer is compared to a formal paremeter, specifi9d by
subtype, and bound by VAR or READONLY (see Section 7.3). If the comparison produces the value fain during implicit
comparisons, the X.SUBTYPE exception is raised.
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4.1.7 RANGE

range

A range represents a contiguous sequence of values of some type.

RULES

Expression I and expression 2 must have the same type.

If expression I is less than expression 2, the range represents all successive values beginning with
the lowest value (expression I) and ending with the highest value (expression 2). If expression.- I and
expression 2 have the same value, the range represents on;- that value. If expression 2 Is less than
expression 1, the range represents no values.

NETES

Ranges with no valuos are useful when defitwing index variobiua (sa. Section 6.5), since they allow zero elaborations of a
repent statement body, and when defining arrays (ao* Section 4.3, Appendix C.7), since they allow empty arrays. Ranges are used
for constraint properties of integer, enumeration, and floating point subtypes, for case statement v',lue labels (#eo Section 0.4), and
for slicing (@e. Section 5.3),

EXAMPLES
VAR w : ENIJMC 'one, 'two, 'three, 'four, 'five,

'six, 'seven, 'eight, 'nine, 'ten] ('one .. 'five);
VAR x,y :INT(I..10)- :='10;
VAR z : FLOAT(10,1.0 .. 100.0);
VAR a : ARRAY INT(1..x) OF BOOL;

FOR i : INT(x..y) REPEAT

END REPEAT;
CASE x

WHEN 1.. 5 0 ..
WHEN 6_.10 =>..

END CASE;

... .a(x. .y) .. .



4.2 VARIABLES AND CONSTANTS

Each variable or constant has a subtype which is known when it Is created and does not change
during its lifetime. There are two kinds of variables, defined variables and dynamic variables. The
value of a variable may be both accessed and modified. The value of a constant may be accessed but
not directly modified. At creation, all constants must be initlalized to some value and each variabio Is
either initialized to some value or is uninitialized. Variables and constants are data Items are further
described in Section 5.1.

NOTES

Defined veripbles are specified in the following ways:

a) a vorinble decloration (declared variable) (see Section 4.2.1)

b) an OUr formal parameter (parameter variable) (set Section 7.3)

c) a VAR formal parameter (parameter variable) (see Section 7.3)

d) a repeat statement with a for phrase (index verisble) (see Section 6.5)

Definitions of declared variables, OUT parameter variables, and index verables create new variables. Definitions of VAR parameter
variables associate new names with *xiutintg variables.

There are also dynamic variables which are not defined but rathe? created by elaboration of the ALLOC statement (Bse Section
4.4.3)

Constants are defined in the followint ways:

a) a-constanit declaration (d0clarod constant) (see Section 4.2.1)

b) a CONST formal parameter (parameter constant) (see Section 7.2)

Definitions of declared constants and parameter constants create new constants.
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4.2.1 VARIABLE OR CONSTANT DECLARATION
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These declarations define variables and constants.

RULES

Each tdenttfier is defined as a variable (VAR declaration) or a constant (CONST declaration) in the
scope in which the declaration is local.

If no subtype Is specified for a constant, the subtype of the constant becomes the subtype of the
initialization expression. Initialization is performed by assignment ( :: ).

Elaboration of a vartable declaration results in the creation of a variable. If an initialization phrase
is present, the variable is initialized to the value given by elaborating the expression in the
initialization phrase. Elaboration of a constant declaration results in the creation and initialization of a
constant.



NOTES

When initiali.ation is vpecified, the type of the vorlable or constant must be assimnable (tso Section 4.3). The XJNIT exception

im raised when there is an attempt to access the value of an uninitiolized variable.

Some variables are automatically initialized, even ,. hen initialization is not explicitly rpecified. These ore varlables of indirect

types and ACT, MAILBOX, DATALOCK, and FILE types. Automatic initialization can also be established for user-defined types (see

Section 133), 

Location spectfictllons are used for machine-dependent representation@ and are decribed in Section 12.3,

EXAMPLES

VAR x : INT(l..100) := 5;
CONST y := TRUE;

CONST z .: INT(O..10) : 0;
VAR a : FLOAT(0,1.0 .. ,

4.3 OVERVIEW OF BUILT-IN TYPES

This section gives a brief overview of the types which are built into the language, along with their

subtypes, procedures, and functions. A more detailecd presentation of each of the types Is given in

Appendix C. 
j

If a value can be assigned to a uariable (i.e., if the := procedure is defined), the type of the

vQriable is said to be assignable. Note that assignment is used in the following cases:

a) assignrtment statements (see Section 6.1);
b) initialization (see Section 4.2.1);
c) CONST formal parameters (see Section 7.3); and
d) OUT formal parameters (see Section 7.3).

The relational operators are >, = <, >, (: )= (see Section 5.2).

Boolean

Type: BOOL
Subtype: BOOL
Unary: NOT
Binary: AND, OR, XOR, =, /
Assignable: yes
Literals: see Section 2.3.9

Integer

Type: INT
Subtype: INT(min .max)
Unary: +, -
Binary: +, -, *, DIV, ss, MOD, relational operators

Function: ABS, SUCC, PRED
Assignable: yes
Literals: see Section 2.3.6



50 Section 4.3 RED LRM 8 March 1979

Floating Point

Type: FLOAT
Subtype: FLOAT(precision, min..max)
Unary: +, -
Binary: +, -, *, /, **, relational operators
Function: ABS, FLOOR
Assignable: yes
Literals: see Section 2.3.6

Precision is the minimum number of decimal digits to be represented.

Enumeratior.

Type: ENUH[enum-literall,enum-lteral2,...,enum-literaln]
Subtype: ENUH[enum-literall,enum-lteral2,...,enum-llteraln]

or
ENUM~enum-literall,enum-lteral2, ...,enum-11taraln](min..max)

Binary: relational operators, &
Function: SUCC, PRED, POS
Assignable: yes
Literals: see Section 2.3.7

Enumeration values are ordered as they appear in the type property list, with the leftmost
being lowest. A range constraint in an enumeration subtype restricts values from the set of all
possible values (in the type) to the set of legal values for this subtype.

Record

Type: RECORD(compl:typel,comp2:type2,...,compn:typen]
Subtype: RECORDKcomp : subtypel, comp2:subtype2, . ..,compn:subtypen]
Binary: =,/=
Component Selection: record-var.comp
Assignable: yes, if all components are assignable
Constructor: see Section 5.6

Successive components having the same type can also be written as

compI, comp2,...,compn:typej



Union

Type: UNION[compl:type, comp2:type2,... compn:typen]
Subtype: UNION~compl : subtypel, cornp2 :subtype2, .. . ,compn : subtypenJ

or
UNION[comp.:subtype1, comp2:subtype2, ... ,compn:subtypen]

(exp)
Binary: =, /=
Component Selection: unionvar.comp
Tag Inquiry: unton-var.TAG
Assignable: yes, if all components are assignable
Constructor: see Section 5.6

A union type consists of multiple components, only one of which may be accessed at any

point in the lifetime of a union variable of this type. If a subtype constraint is present,

variables with that subtype can have only the component whose name is specified In the

subtype constraint as an enumeration value. For example,

UNION~a : INT(M..10), b : BOOL] ('b);

The tag inquiry returns the name (as an enumeration value) of the component currently

accessible. The component which is present in a union may change over the lifetime of the

union variable. Successive union components having the same type can also be written as

comp 1, comp2,.. .compn : typej.

Array

Type: ARRAY dim-typel, dlm-type2,...,dlm-typen OF camp-type

Subtype: ARRAY dim-subtypel, dlm-subtype2, ... dim-subtypen OF comp-subtype
Binary: & (concatenation for one-dimensional array), a, /=
Component Selection: array-var(posltlonl, position2, . . .,positionn)

array-var(mln. max) (slicing for one-dimensional
array)

Assignable: yes, if component type is assignable
Constructor: see Section 5.6

The dimensions must be integer or enumeration types or subtypes.

Set

Type: SET[type!
Subtype: SET[subtype]
Unary: NOT (complement)
Binary: AND (intersection), OR (union),

XOR (symmetric difference), IN (membership),
relational operations (subset relations)

Assignable: yes
Constructor: see Section 5.6

The type contained in the type property list can only be INT or an enumeration type.
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5tring

Type: STRING[ type]
Subtype: STRINGsubtypel (length)
Binary: & (concatenation), relational operations
Component Selection: string.var(postlon)

str tng..var(rnln. .max)

Assignable: 
yes

Literals: see' Section 2.3.8

The type contained in the type property list must be an enumeration type.

Fixed Point

The first quarterly review of the DoD common language effort has emphasized the lack of a

consensus on the nilitary's requirement for a fixed point facility. The fixed point described in

Steelman is actually a scaled integer facility. It seems that more discussion is necessary before a

decision is reached by the military on the fixed point facility necessary for most applications. When

this determination is reached, the design can be built into this language. Some of the possible design
alternatives for fixed point are discussed in the companion Justification document.

NOTES

There ore, bMiides the basic types discussed above, mome other-built-in types desit-twd for special purposes. The MAILBOX,
DATA-LOCK, and ACT types are described in Chapter 10. The LATCH type is described in Appendix C.13. FILE types are described
In Appendix C.14, Pointers are not a-tInuale type but are instead provided vie the indirect form of the type dedareflon (see
Section 4.4.3).

4.4 DECLARATION OF SUBTYPES AND TYPES

Two kinds of declarations can be used for subtypes and types, the- abbreviation declaration and the

type declaration. Both are deferred declarations.

An abbreviation declaration defines an abbreviation. Invocation of an abbreviation produces the
type or subtype specified in the declaration of the abbreviation. An abbreviation is particularly useful
when a type or subtype with a long specification is needed in several places in a program. As with all

deferred units, an abbreviation can be parameterized. This permits a single abbreviation to be used

to abbreviate a set of related subtypes.

A type declaration defines a new type distinct from all other types. The user can create an
abstract data type by placing the type declaration within a capsule declaration, together with a set of
procedures and functions which operate on actual parameters of the defined type. Since a type is a

deferred unit, it may be parameterized (parameters are used to specify the constraint property list of
subtypes of the new type) and may be generic (the translation time property list serves as the type
property list). There are two basic forms of the type declaration: a direct typne declaration and an
indirect t'ipnodeclaration. Variables and constants having an indirect type can be used to reference

dynamically allocated variables.
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RULES

The identifier in an abbreviation declaration is defined to be an abbreviation in the scope in which
its declaration appears. ..

Only CONST formal parameters may be used in an abbreviation declaration. An abbreviation
declaration which abbreviates a type may not have any formal parameters.

Elaboration of an abbreviation invocation consists of elaborating the actual parameters, binding
the actual parameters to the formal parameters of the named subtype abbreviation (see Section 7.3),
and elaborating the type or subtype in the abbreviation declaration. The result of the invocation is the
elaborated type or subtype. If the specification following the : could be a. type or a subtype, then the
result of an invocation can be used as either a type or a subtype. Abbreviations are assumed to be
normal (see Section 7.2.1).

NOTES

An abbreviation declaration is a closed scope The formal parameters are defined in this scope. Since an a66reviation declaretlon
cannot have an imports list, no variable names may be used wilhin the subtype.

The only legal use of the abbreviation is in on abbreviation Invocation. If the abbreviation is parsmoterlzod, the Identifier may
not be used without parameters ms a type

Recursive cycles involving only abbreviations are illegal since lhe resultint specification would be infinite.

Abbreviations can be overloaded (see Section 11.2) and can be generic (see Section 1 1.3).

EXAMPLES

ABBREV 110 : INT(I..10); % This is equivalent to
VAR y : I10; % VAR y : INT(I..10);

ABBREV flags(n : INT)
ARRAY INT(I..n) OF BOOL; % This is equivalent to

VAR b flags( 10); % VAR b : ARRAY INT(1..10) OF BOOL;

ABBREV ASCII : ENUMV...; % see Appendix C for a complete
% definition

VAR x : ASCII; % ASCII is a subtype here
-PROC p(x : STRING[ASCII]); % ASCII is a type here

END PROC p;



4.4.2 DECLARING AND USING A NEW TYPE
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A type declaration defines a new type, distinct from all other types. For example, the declaration

TYPE bits(n : INT) : ARRAY INT(1..n) OF BOOL;

defines a new type

bits

Since the type declacration is a deferred declaration, it defines a deferred unit (a type) which can be
invoked. Invocation of a type produces a subtype of that type. For example,

bits(5)

is a subtype of the type bits. The actual parameter list forms the constraint property list of the
subtype. For example, for the subtype bits(5), the constraint property list is (5). The formal
parameters of a type are also used to define the attributes of subtypes of that type (see Section 4.5.3).

Each subtype of a type is defined in terms of the subtype specified in the type declaration, which is
called the underlying subtype. For example, the underlying subtype of bits(5) is

ARRAY INT(1..5) OF BOOL

Each underlying subtype of a new type will belong to a type called the underlvinR type. For example,
the underlying type of bits is ARRAY INT OF BOOL. Each variable (or constant) of some
u.ser-defined subtype has a component variable (or constant) called the underlying variable (or
underlying constant) of the underlying subtype. The standard component selector .ALL is used to
access the underlying variable or constant explicitly.

Several operations are automatically defined for each new type: access to the underlyir., variable
or constant; access to components (if any), equality, and assignment. No other operations are
automatically defined for a new type. The essential operation on which all other operations are based
is .ALL qualification. Given a variable (or constant) with some new type, .ALL qualification produces
the underlying variable (or constant). For example, given

VAR a : bits(5);

then

a.ALL

is the underlying variable of a and has subtype ARRAY INT(1. .5) OF BOOL

If the underlying type has components (e.g., is an array, record or union), then a component
selector operation is automatically defined for the new type In terms of the component selector
operation of the underlying type. For example,

a(M)

can be written instead of

a.ALL(i)

If the underlying type is assignable, then assignment is also defined for the new type in terms of
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the assignment for the underlying type. For example, given

VAR b,c : bits(5);

then

b := c;

can be written instead of

b.ALL := c.ALL;

If equality is defined for the underlying type, then equality is also defined for the new type In terms
of equality for the underlying type. For example,

b= c

can be written instead of

b.ALL = c.ALL

A new abstract type can be created by placing a type decaration in the body of a capsule.
Operations for the new abstract type are user-defined by procedures *and functions defined in the
same capsule. The operations take parameters and/or produce results of the abstract type. These
operations are implemented using .ALL or component selection to access the underlying variables and
constants. One important property of an abstract data type is that It is possible to change the
underlying type without affecting any users of the abstract type. To achieve this, users of the
abstract type must be denied access to the underlying variables of the abstract type. This is
accomplished by no. exporting either ,ALL qualification or any of the selector operations that are
automatically defined.

RULES

The identifier in a direct type declaration is defined to be a type name in the scope in which the
type declo.ration appears. If there is no formal translation time property list, then this identifier Is the
type. If there is a formal translation time property list, then the types consist of the type identifier
together with an actual translation time property list.

Only CONST formal parameters may be used in a type declaration.

Elaboration of a user-defined subtype consists of elaborating the actual parameters, binding the
actual parameters to the formal parameters of the named type (see Section 7.3), and elaborating the
subtype. The result of a user-defined subtype is a subtype of the invoked type, whose constraint
property list is the actual parameter list of the invocation. The underlying subtype of this result
subtype is the elaborated subtype. •

Each newly defined type has the following operations automatically defined:

a) Assignment ( :=) is defined in terms of assignment for the underlying type. If the underlying
type is not assignable, the defined type is not assignable.

b) Equality (W) is defined In terms of equality for the underlying type. If equality is not available
for the underlying type then it is not available for the defined type.
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c) Component selection, If the underlying type has components.

d) .ALL qualification, which allows access to underlying variables and constants.

Types are assumed to be normal (see Section 7.2.1).

NOTES

A now type is invoked to produce a subtype of thot new type. Unlike an abbreviation, if the type is parameterized (and has no
type property list), the identifier may be used without parameters as s type. If no parameter list is present in the type declaration,
the defined type has only a single subtype If a formal parameter list is present, the defined type has ome or more subtypes.

A type declaration is a closed scope, The formal parameter names are defined in this scope. Since a type declaration cannot
have an imports list, no variable names may be used within the subtype.

Users can d4fine their own osnignment (.) procedure, equality (-) function, and selection functions for new types. A user
definition of assignment, equality, or of selection will override the automattcally provided assignment (se Section 13), equality (see
Section 4 1 5), or selection (se Section 134). It is also possible to define initialization and finalization operations which are
automatically ;nvoked ot the beginning and end (respectively) of the 1!felime of a daie item heving a user-defined type (see Section
13.3).

The type decloratlon, when used in a generic declorstion (see Section 11.3), can bv used to create a family of types. Any actual
trenslation time properly list nerves as the type property list,

Representation specifications ore used for machine-dependent programs and are described In Section 12.2.
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EXAMPLES

1) New string types

TYPE strnglO : STRING[ASCII] (10);

GENERIC i : INT
TYPE mstrng[i] : STRINGEASCII] (M);

TYPE strng (J : INT) : STRING[ASCII] (J);

VAR x : strngl0; % underlying variable is a string
% with length 10

VAR y : mstrng Ek]; % underlying variable Is a string with
% length k where the value of k must
% be known at translation time

VAR z : strng (m); % underlying variable is a string with
% length m where the value of m need
% not be known until run time.

2) An abstract data type -- stacks

CAPSULE stackcap EXPORTS stack, init, push, pop;
CONST size := 100;
ABBREV elemtype : FLOAT(10, -100.0 .. 1000.0);
TYPE stack : RECORD top : INT(M..size),

elem : ARRAY INT(1..size) OF
elemtype];

PROC init (VAR s : stack);
s.top := 0;

END PROC init;

PROC push (VAR s : stack, e :elemtype);
s.top := s.top + 1;
s.elem(s.top) := e;

END PROC push;

PROC pop (VAR s : stack, OUT e : elemtype);
e := s.elem(s.top);
s. top :: s.top - 1;

END PROC pop;

END CAPSULE stackcap;
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4.4.3 DECLARING AND USING A NEW INDIRECT TYPE
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A voriable having am indirect type (called an indirect variable) is a pointer. The value of an
Indirect variable is either nil or a reference to some dyaMi (I.e., it 'points' to the dynamic
variable). For example, in

TYPE t : PTR STRINGtASCIt] (5);
VAR x,y : t;

the variables x and y are indirect variables that can either have the value nil or can point to somedynamic variable with subtype STRING[ASCIIJ (5). All indirect variables are automatically initializedto have value nil. There is also a literal for the value nil. For example,

- t2221
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x := NIL;

sets the value of x to be nil.

A dynamic voriable is created by elaboration of an allocation statement. For example, elaboration
of

ALLOC y PTR := "ABCDE";

creates a new dynamic variable with subtype STRINGEASCII) (5), initializes It to have the value

"ABCDE", and sets y to point to this dynamic variable. Note that dynamic variables, unlike other
variables, are not defined or named.

Dynamic variables are referenced via indirect variables. As with direct types, .ALL qualification
and component selection operations (if the underlying dynamic variable has components) are
automatically defined. These operations are permitted only if the value of the indirect variable Is not
nil. The operations provide access to the referenced dynamic,- ariable or Its components (I.e.. they

are 'dereferencing' operations). For example,

VAR sl,s2 : t;
ALLOC s2 PTR := "value"; % create dynamic variable

...sl.ALL... % illegal since sl is nil

...sl(i)... % illegal since sl is nil

... s2.ALL... % the dynamic variable pointed to
% by s2, having the value "ABCDE"

... s2(3)... % a component of the dynamic
% variable pointed to by s2,
% having the value IC

ALLOC sl PTR; % create dynamic variable 2
s1.ALL := s2.ALL; % sets the value of dynamic variable 2

% to be equal to the value of dynamic
% variable 1 ("value')

The lifetime of a dynamic variable is different than that of other variables. A dynamic variable
exists as long as there is some way of accessing it. This means that the lifetime of a dynamic variable
Is not coupled to the elaboration of a.scope.

As is the case for direct types, assignment (:=) is also automatically defined for indirect types.

The assignment operation for indirects, however, is a "sharing" assignment. For example,

VAR ai,a2,bl,b2,b3 : t;
ALLOC bl PTR := "VWXYZ" ; % creates dynamic variable 1
ALLOC b3 PTR := "abcde"; % creates dynamic variable 2
al := NIL; % sets al to nil
a2 := al; % sets a2 to nil
b2 := bl; % b2 now points to dynamic

% variable 1
S1.ALL := b3.ALL; % changes value of dynamic

% variable I
... bl.ALL ... % has value "abcde"

b2.ALL ... % has value "abcde"

-- --------
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... b3.ALL ... % has value "abcde"

The equality operators (=, I=) are also automatically defined for indirect types. For example,

al = a2... % true, both are nil
... bt = b2... % true, both point to same dynamic variable
...b2 = b3... % false, each points to different

% dynamic variable
...b2.ALL = b3.ALL.. % true, both dynamic variables have the

% value "abcde"

As is the case for all data items, the subtype of a dynamic variable need not be known until the
dynamic variable is created. Constraints on a dynamic variable which are to be resolved at creation
time are specified via an allocation property list in an dUocaltion statement. For example,

TYPE vstring : PTR(len : INT) STRING(ASCII] (len);

VAR vl,v2 : vstring;

ALLOC vi PTR(3) "abc"; % (3) is the allocation
% property list

ALLOC v2 PTR(4) := "abcd";

Dynamic variables can contain components having indirect types which reference other dynamic
variables. This means that recursive data structures and data structures having cycles can be created.
For example,

TYPE list : PTR RECORD[ val : INT(0..100),
next :list];

VAR 1st : list;

% create a singly linked list with 3 elements
ALLOC 1st PTR [val : 3, next : NIL];
ALLOC 1st PTR =val : 2, next : 1st];
ALLOC Ist PTR : [val : 1, next : Ist];

% now make the list circular
lst.next.next.next := Ist;

In addition to indirect variables, it is also possible to define indirect constants. Like all constants,
an indirect constant must be initialized and its value may not be changed. The value of the dynamic
variable which it references may, however, be changed.

When creating an abstract data type and its subtype, the programmer must ensure that the
implementation of the abstract type is invisible to the user. This permits the implementation to be
changed without affecting those parts of a program which use the abstract type. The programmer
who implements an abstract type should be able to change the underlying type from a direct type to
an indirect type (and vice versa), without affecting the users of the abstract type. For example, an
abstract stack data type could be implemented using either an array (a direct type) or a linked list

(achieved via an indirect type). For this reason, it is important that when a type is exported from a
capsule used to realize an abstract data type, it should not be possible to detect outside the capsule
whether the exported type was a direct or an indirect type.
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As mentioned above, a dynamic variable exists as long as there Is some way to access it.
Detecting when there is no longer any way to access a dynamic variable and reclaiming the storage
that was used for it usually involves a process called garbage collection. In some cases, the overhead
of full garbage collection can be avoided and a simpler and less costly strategy used. For cases
where this is impossible;*the user can avoid garbage collection costs by the use of the FREE
procedure. If v is an indirect variable that points to some dynamic variable and there are no other
pointers to that dynamic variable, then

FREE(v);

reclaims the storage for that dynamic variable and sets the value of v to nil. If there were other
pointers to the dynamic variable, the XJFREE exception is raised (this prevents the problem of
dangling pointers). Although this avoids the cost of garbage collection, it Introduces some cost in
checking that there are no other pointers. For those cases where even this cost is unacceptable, it Is
possible to inhibit the generation of code for doing this checking by suppressing the XFREE
exception (see Appendix B).

RULES

Indirect Type Declaration

The identifier In an indirect type declration is defined to be a type name In the scope In which
the indirect type declaration appears. Indirect types are referenced using the same rules (both
syntax and semantics) as for direct types (see Section 4.4.2).

Only CONST formal parameters may be used.

Indirect types are invoked using the same syntax as direct types (see Section 4.4.2). Elaboration
of a user-deftned subtype consists of elaborating the actual parameters and binding the actual
parameters to the formal parameters I of the named type (see Section 7.3).

The result of a user-defined subtype is a subtype of tha invoked type, whose constraint property
list is the actual parameter list of the invoc~iion.

The value of an indirect vwiriable or constant is either nil or a reference to some underlying
dynamic variable. All indirect variables are automatically initialized to have the value nil.

The following operations are automatic~ily defined for each indirect type:

a) Assignment ( :. ) is a sharing assignment. If the indirect subtypes of left hand side and right
hand side are not equal the X-SUeTYPE exception is raised.

b) Equality (W) is defined to produce true if both of its actual parameters are nil or if both
reference the same dynamic variable.

c) Component selection, if the underlying type has components. If the value of the variable or
constant is nil when component selection is applied to the variable or constant, the XNIL
exception is raised.

d) .ALL qualification which gives access to the underlying dynamic variable. If the value of the
variable or constant is nil when .ALL qualification is applied to the variable or constant, the
X-NIL exception is raised.

Types are assumed to be normal (see Section 7.2.1).

-- - - -
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Allocation Statement

The variable must have an indirect type on which .ALL qualification is available.

Elaboration of the allocation statement consists of:

a) elaborating the variable;

b) elaborating the actual parameters;

c) binding the actual parameters to the formal parameters 2 in the Indirect type declaration
associated with the type of the variable;

d) elaborating the subtype in the indirect type declaration;
e) allocating a dynamic variable having that subtype;

) If initialization is specified, Initializing the newly created dynamIc variable (using :);, and

g) setting the variable named in the allocation statement to be a reference to the newly created
dynamic variable.

The dynamic variable must have an assignable type if initialization is specified in an uozcation
statement.

Because indirect types are always new typee, and therefore named, the type equivalence rules are simplified (se.. Section
4.1.5).

An tnd/rmd type dedarstion is a cloted ecope. The formal parameter names (of both formal parameter lists) are defined In this
scope. Since a type declwAtion cannot have an imports list, no variable names may be used within the subtype.

Representation specifications are used for machine-dependent programs and are deucriled in Soction 12.2.

EXAMiPLES

1) Indirect string types

TYPE strl0 : PTR STRINGEASCII] (10);

GENERIC i INT
TYPE mstr [i] : PTR STRING[ASCII] (1);

TYPE str(j : INT) : PTR STRING[ASCII] (J);

TYPE vstr : PTR(u : INT) STRING[ASCII] (u);

VAR w : stril; % w can point only to strings
% of length 10

VAR x : mstr [ml; % x can point only to strings
% of length m where the value of
% m must be known at translation
% time

VAR y : str(n); % y can point only to strings
% of length n where the valuG of
% n need not be determined until
% run-time

VAR z : vstr; % z can point to strings of any
% length. The length of the
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% string is determined when the
% string is allocated.

'2) Defines symbol tables which can hold symbols of different lengths
CAPSULE sym-.tab..cap EXPORTS syM,..tab, init, insert, look-..up;

TYPE sym : PTR (len :INT) STRINGEASCII(len);

TYPE sym..tab (size :INT) : RECORD~top :INTCS..size),
syms :ARRAY

INT(1. .size)
OF sym];

PROC init (VAR 3 : syu..tab);
s.top := 0;

END PROC init;

FIJNC look-..up (READONLY s : syn...tab,
val : STRINGtASCII])

=> INT(0.s.top);
FOR i : INT( .. s.top) REPEAT

IF s.syms(i).ALL val THEN
RETURN i;

END IF;
END REPEAT;
RETURN 0;

END FUNC look-..up;

PROC insert (VAR s s M I~tab,

END ~ val STRINGEASCII], a al

stp:X s.top + 1;
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4.5 TYPE AND SUBTYPE INQUIRY, PREDICATES AND ASSERTIONS

Since a formal parameter can specify a type, rather than a subtype, a deferred unit with a formal
parameter can be invoked with actual parameters having any subtype belonging to that type. Although
this flexibility is often quite useful, there are cases where it is desirable to further limit either the
values or subtypes that actual parameters are permitted to have (in order to exclude values which are
not meaningful for -the deferred unit). In many cases, these limitations also allow the translator to
produce more efficient code.

Some limitations can be achieved by specifying a subtype (rather than a type) for a formal
parameter. A finer degree of control can be achieved by including an ossertion at the beginning of the
body of the deferred unit. Assertions concerning subtypes are supported by language facilities for
inquiring about the type, subtype and subtype properties of a data item. These features are discussed
in the following subsections.

Inquiry is also useful for several other purposes, including specifying the subtype of local data
Items of a procedure or function and accessing array Index bounds.

4.5.1 SUBTYPE INQUIRY

RULgS

If exp is any expression, then the result of elaborating

SUBTYPEOF(exp)

* is the subtype of that expression.

If exp is an expression for an n-dimensional array and i isa manifest Integer expression whose
value is between one and n, then the result of elaborating

INDEXOF(exp, 1)

is the t'th index subtype of the array. The form

INDEXOF(exp)

is equivalent to

INDEXOF(exp, 1)

1(
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EXAMPLES

EXCEPTION not-found;

FUNC f (x : INT) => SUBTYPEOF(x);

END FUNC f;

PROC q (VAR a',b : ARRAY INT OF FLOAT);
ASSERT INDEXOF(a) = INDEXOF(b);

END ROC q;

FUNC search (a ARRAY INT OF FLOAT, v : FLOAT) =>:INDEXOF(a);
FOR i : INDEXOF(a) REPEAT

IF a(i) = v THEN
RETURN i;

END IF;
END REPEAT;
RAISE not_found;

END FUNC search;

PROC r (VAR x,y : FLOAT);
ASSERT SUBTYPEOF(x) = SUBTYPEOF(y);

END PROC r;

4.5.2 TYPE INQUIRY

RULES

If exp is an expression, then the result of elaborating

TYPEOF(exp)

Is the type of that etpression. If st is a subtype, then the result of elaborating

TYPEOF(st)

is the type to which that subtype belongs (see Section 4.1.3).

NOTES

Elaborafions of TYPEOF iskes pleco durint fronleliont
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4.5.3 ATTRIBUTES

In addition to inquiry of an entire subtype, it is also possible to inquire about specific subtype
constraints, called attributes.

RULES

The attributes of built-In types are listed in Appendix C.

Each fornal parameter of a user-defined type is an attribute of that type. The identifier which Is
the name of the formal parameter is used as the attribute name.

ATTRIBUTE INQUIRY

attribute

Inquiry

subtyoe

Attribute inquiry allows attribute values to be accessed.

RULES

The identifier must be the name of an attribute of the specified subtype or of the subtype of the
specified expression.

Elaboration of attribute inquiry produces the value of that attribute.
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EXAMPLES

INT(l..10).MAX % 10
FLOAT(5, 0.0 .. 10.0).PREC % 5
STRING[ASCII](8).LEN % 8

TYPE matrix (first, second : INT) : ARRAY INT(1..first),
INT(1..second)

OF FLOAT(10, -100.0 .. 100.0);
matrix(5,8).first % 5
matrlx(5,8).second % 8

PROC s (VAR x : FLOAT);
ASSERT x.PREC <= 10;

END PROC s;

FUNC searchl (a : ARRAY INT OF FLOAT, v : FLOAT)
=> INT(-! . INDEXOF(a).MAX);

ASSERT INDEXOF(a).MIN 0;
FOR i : INDEXOF(a) REPEAT

IF a(i) = v THEN
RETURN i;

END IF;
END REPEAT;
RETURN -1;

END FUNC searchi;

PROC sort (VAR a : ARRAY INT OF STRING[ASCII]);
ABBREV x : INDEXOF(a);
FOR i : INT(x.MIN .. PRED(x.MAX)) REPEAT

FOR j : REVERSE INT(i .. PRED(x.MAX)) REPEAT
CONST k := J + 1;
IF a(j) < a(k) THEN

CONST t := a(J);
a(J : a(k);

a(k) := t;
END IF;

END REPEAT;
END REPEAT;

END PROC sort;
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5. EXPRESSIONS
5.1 DATA ITEMS

There are five kinds of data items: defined variables, dynamic variables, defined constants,
readonly data items, and temporary data items. Defined variables and constants are described in
Section 4.2. Dynamic variables are described in Section 4.4.3. Readonly and temporary data items are
discussed below.

The term uariable is used to refer to defined and dynamic variables. The term constant Is used to

refer to defined constants, readonly data items, and temporary data items.

RULES

A data item can hold a single value. The value of any data item may be accessed (i.e., read). The
value of variables (both defined and dynamic) and their components may also be modified. The value
of other data items may not be modified.

A readonly data items is a variable whose use is restricted in certain contexts. Within those
contexts, the value of the readonly data item cannot be modified directly. In some cases, however, It
Is possible for the value of the readonly data item to be modified indirectly, outside the context.

a> When an actual parameter variable is bound to a READONLY formal parameter, the formal
parameter is treated as a readonly data item within a deferred declaration. Changes to the
actual parameter variable will change the formal parameter (see Section 7.3). This Is the only
way that dynamic variables may be made readonly.

b) Variables imported READONLY into a compound declaration are treated as readonly data items
within the corm pound declaration. The variable may be changed outside the compound
declaration (see Section 3.7 ).

c) Vo.riables exported READONLY from a capsule into a scope where the capsule is invoked are
treated as readonly data items within that scope. The variable may be changed within the
capsule (see Section 8.2)

d) Variables exported from a capsule and exposed as READONLY are treated as readonly data items
within the scope in which the capsule is invoked. The variable may be changed within the
capsule (see Section 8.1).

A temporary data item is the result of a built-in or user-defined literal or constructor (see
Sections 2.3.5, 5.6, and 5.7), the result of a function or operator (see Section 7.2), or the result of
attribute inquiry (see Section 4.5.3). For convenience, these results will be referred to as values.

The lifetime of. all defined variables and constants and formal parameters (and their components) is
the lifetime of the scope immediately containing their definition. The lifetime of dynamic variables
extends from their creation by the allocation statement until the time when they can no longer be
accessed. The lifetime of temporary data items extends from the time they are produced until the end
of the elaboration of the construct in which the temporary is used.

Initialization can optionally be specified whenever a variable is created. For some types, if no
initialization is specified, there is a default initial value. Otherwise, the variable is uninitialized until a
value has been assigned to it. An attempt to access the value of an uninitialized variable will raise the
XJNIT exception.
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5.2 OPERATORS AND OPERANDS
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An expression is a computational rule for producing a data item. An expression can be a single
operand or a combination of operators and operands. Operators are either prefix or Infix operators.

Prefix operators irrmediately precede an operand. Infix *operators operate upon a left and right
operand to produce a value. The association of operands to an operator is determined by the
precedence of operators. Operands are associated with the operator of higher precedence.

Parentheses can be used to modify the association (see Section 5.3).

RULES

Operator symbol I is a prefix operator. Valid prefix operator symbols are +, -, and NOT.
Operator symbol 2 is an infix operator. Valid infix operator symbols are M, , /, MOD, DIV, b+, -,

/=, <o =, :>, IN, AND, OR and XOR..



The operands of prefix and Infix operators are determined based on the built-in precedence of
operators given below:

highest precedence
+0 (prefix)

,IMOD, DIV, &

NOT (pref ix)
AND
OR, XOR

lowest precedence

Within a precedence level, associativity Is left to right.

NOTES

Ar it hmticQer ators

Arithmetic operators (infix 4, -, s,a, modulo (MOD), infter divigion (DIV), and prefix .,4take operands of arithmetic
types (INT, FLOAT, and FIXED) and return arithmetic volue.

Concatenation Operator

A concatenation operator (infix &) takes string and enumeration operands end produces a string, or takes one-dimensional array
operands and produces a one-dlimensional array.

Relational Qajratqrs

Relational operators (infix ., not equal to) , . .,~,st membership (IN)) take arithmetic, boolean, enur,arutlon, string, and
set operands and return a boolean. For boolen operands, only - end /- are deflned. For arithmetic operands, the relatIonal
operators define a numerical ordering. For enumeration end string operands, the relational operators define a collating sequence.
For sot operands, the relational operators define a subset relationship.

Loptical Operators

Logical operators (infix AND, OR, XOR, and prefix NOT) take boolean operands and produce a booleeri or take sot operands arid
product a set For boolean operands, the logical operators define and, or, exclusive or, end-complement. For set operands, the
logical operators define Poit intersectilon, union, symmetric difference, end complement

A type or subtype comnparison is one which is used to compare types or subtypes end returns a boolean value. This form of
expression iv doscribod in Section 4.5.1 and 45%2 .

If is possible to overload the built-in definitions of operators to allow ussr-defined operators (see Section 13.2).

EXAMPLES

lnt..var % produces integer
3+4 =(7 DIV 3)4.2 % produces boolean
'red > enum..var % produces boolean
arrayl(2..4) & array2(3,.7) % produces array
seti AND set2 % produces set
00+) DIV (7-J) % produces integer
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5.3 PRIMARY
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irray or string is referenced by subscripting to produce a single component or slice.

RULES

I ' itifier I must be associated with a variable or constant in the scope Immediately containing the
exparession conte. -Ing identifier 1.

The result of elaboration of a parenthesized expression is the result of elaboration of the
expression.

N-OTES

Rule i.,r subscripling are described in Appendix C under ARRAY and STRING types. Rules for dot selection are doscribed iT.

Appondi C under REV'IRD and UNION types and in Section 134. User-cdefiiwd subscripting and dot selection is described in
Seccim 134 Lierais ,nd constructors are deacwlbed in Section 54. User-dafined literals and constructors are deoscribd in Section
12~5 Function Invocation primaries are described in Section 72. Attribute fnq~qry is described mn Section 45sa Resolved constants
are described in Section 5,7



76 Section 5.4 RED LRM 8 March 1979

5.4 BUILT-IN AND USER-DEFINED LITERALS AND CONSTRUCTORS

LiteraLs and constructors are used to specify values for variables and consta.nts. Literals are
provided for specifying values of each basic language type, For example,

TRUE % a BOOL literal
'red % an ENUM literal
32 % an INT literal
4.53E6 % a FLOAT literal
"This is a string." % a STRING literal

The literal, NIL, is also provided to specify a value for all indirect types.. Chapter 2 gives forms for
built-in literals and Section 5.5 gives rules for their types and subtypes.

Values for variables consisting of multiple components are written using constructors. For example,

VAR a : ARRAY INT(I..10) OF BOOL;
VAR r : RECORDE re,im FLOAT(10, -100.0 .. 100.0)1;

a H[ FALSE, 2..10 •TRUE];

r Ere • 3.6, Im : -5.7];

Section 5.6 gives rules for built-}n constructors.

Users can also define literal and constructor forms for new types (see Section 13.5). For example,
% suppose MILES, COMPLEX, and VSTRING are user-defined types
% for which user-defined construittors are available

CONST d := 10.3#MILES;
VAR c : COMPLEX;
VAR v : VSTRING;

c Ere : 0.0, im: 2.3]#COMPLEX;
v "This is the value"#VSTRING;



5.5 MANIFEST EXPRESSIONS AND CONDITIONAL TRANSLATION

A manifest expression is an expression whose value is known during translation. The simplest
manifest expression -is a Uteral. Manifest expressions have two important uses: first, they are used
to achieve conditional translation and second, they are used as replacement elements for generic
parameters with value generic constraints (see Section 11.3.4).

RULES

Manifest Expressions

The following are manifest expressions:

a) any litera4-

b) the result of any of the following built-in operators when their operands (actual parameters)
are manifest

BOOL, INT, FLOAT operations -- all, except :=
ENUM operations -- =, /=, &
STRING operations -- &, =, /=, component selection

c) a parenthesized expression, where the expression is a manifest expression;

d) references to-constants declared with the form

CONST id := exp;

where exp is a manifest expression; and

e) references to generic parameters with a va!ue generic constraint (see Section 11.3.4).

No other expressions are manifest expressions.

All built-in arithmetic operations in manifest expressions are performed using the maximum
precision and range of the target system.

Conditional Translation

If the condition of an if or case statement is a manifest expression, code is generated only for the
selected alternative body. Any translation time errors that occur in those bodies not selected will be
treated as warnings and will not prevent program execution.

If the subtype constraint (i.e., the tag value) of a union subtype (see Appendix C.6) is manifest,
then only space for that component is reserved.

NOTES

Manifest expressions are guaranlteed to be elaborated t translation time; however, this does not prohibit the translator from
also elaboretin any other erpression whose value it can determine.

Section 5.7 gives rules for type and subtype resolution of manifegt expressions.
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EXAMPLEa

1) Conditional translation

CONST mach ine ::PDP11;

ABBREV word UNION[ S360, S310 : bits(32),
PDP11 : blts(16),
CDC6600 : bits(60)] (machine);

IF machine 'PDP11 THEN

END IF;

CASE machine
WHEN IS360, '5370 =>..
WHEN 'PDPI11>..
WHEN ICDC6600 =

END CASE;
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5.6 BUILT-IN CONSTRUCTORS
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Constructors are used to construct values for records, unions, arrays, and sets.

RULES

Values can only be constiucted for assignable types.

For a record or union constructor which is resolved to a record type, there must be a value
specified for each domponent of the record type, and the components must be specified In the same
order as in the record type.

For a record or union constructor which is resolved to a union type, there must be a value
specified for only one component of the union type.

For an array constructor which is resolved to some array subtype, there must be a single value
specified for each component. The range form is used to specify a single value for some contiguous
range of components.

For a set constructor which is resolved to a set type, there can be zero or more values specified,
where each value must hay, the component type of the set. An empty set constructor is the value of

an empty set.

NOTES

Section 5.7 sives rules for type and-subtyps resolution of constructor.

EXAMPLES

VAR rl,r2 : RECORD[w,x : INT(1..I0),
y : BOOL,
z : ENUM['a, 'b, 'c]];

VAR ul, u2 : UNION[w,x : INT(]..10),
y BOOL,
z ENUM['a, 'b, 'c]];

VAR sl, s2 : SET[ENUM['red, 'blue, 'yellow, 'green]];
VAR al, a2 : ARRAY INT(1..3), ENUM['a, 'b, c

OF INT(O..10);
VAR x : RECORD(a : BOOL,

b : SET[INT(1..10)],
c : UNION[d : INT(0..5),

e : BOOL];

rl :=[w, x : 1, y : FALSE, z : 'a];

r2 := w 1, x : 2, y : TRUE, z : 'b];I~u UI: z : 1b];

u2 :[ (w : 3];
( sI := ['red, 'green];

s2 := ;
al E- 1,'Ia : 0, 1,1 : 1, 1,1 : 2,

2,'a : 3, 2,'b : 4, 2,'c : 5,
3,'a : 6, 3,'b : 7, 3,'c : 81;

a2 := [1..3, 'a..'c : 103;
x :[ (a : FALSE, b : (2,3], c : [d : 3]];
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5.7 VALUE RESOLUTION AND USER-DEFINED VALUES

The resobred constant has two purposes: it can be used to create a user-defined literal or
constructor; and it can be used to specify the type or subtype of a manifest expression or constructor,

rE

when the expression wouid otherwise be ambiguous.

User-Defined Values

A litera or constructor can be defined for a user-defined type by overloading the definition of #.
This is described in Section 13.5.

Type and Subtype Resolution

; All ex presstons must have both a type and a subtype. For many kinds of expressions, the type and
subtype of the expresson depends only upon the expression itself. For manifest expressions and
constructors, the type and subtype may also depend upon the context in which the manifest expression
or constructor appears. f the context is the right hand side of an assignment, then the type and

subtype are those of the left hand side. For example,

VAR color : ENUH[ 'red, 'orange, 'blue];

VAR fruit : ENUM[ 'apple, 'banana, 'orange];
color :nt'orange; de.the subtype of 'orange is

% ENUTp 'red, 'orange, 'blue]
fruit :rs'orange; th the subtype of" 'orange is

V r ENUM[ 'apple, 'banana, 'orange]

and

VAR r : RECORD b : INT(1..10)];
VAR u : UNION[ a,b,c : INT(1..5)];

r :[ [b : 3); % the subtype of [b :-3] is
% RECORD[ b : INT(I..10)]

u := b : 3]; % the-subtype of [b : 3] is
% UNIO E a,b,c : INT(0..5)]
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In some cases, the type and/or subtype of a Literai or constructor can not be determined from the

UJteral or constructor and its context. In these cases, the type or subtype must be explicitly specified.

For example,

PROC p (c : color); % definition 1

END PROC. p;

PROC p (f : fruit); % definition 2

END PROC P;

p ('orange); % illegal, ambiguous

p'i'orange#color); % legal, invokes def I

and

ABBREV orderl ENUME'a, 'b, 'c];

ABBREV order2 ENUM('c, 'b, 'a];

VAR x : orderl;
VAR y : order2;

'a < 'c ... % illegal, ambiguous

'a#orderl < 'cWorderl ... % legal, true

'a#order2 < 'c#order2 ... % legal, false

x< b ... % legal, context resolves 'b to
% orderl

Manifest expressions can also depend upon context for their type and subtype. For example,

VAR s : STRING[ASCII] (5);
VAR x : FLOAT(3, 0.0 .. 100.0);
VARy : FLOAT(5, 0.0 .. 100.0);
CONST pi := 3.14149;

S "ABC" & 'CR & 'ILF; % legal, subtype of right-
% hand side is resolved to subtype of

% left hand side

x := p1; % subtype of pi is FLOAT(3, 0.0 .. 100.0)

y pi; % subtype of pi is FLOAT(5, 0.0 .. 100.0)

The type or subtype of a manifest expression or of a constructor are resolved based on the context in

which they appear. If context is not sufficient, a default is provided for integer, enumeration, floating

point, or string values. In cases where resolution cannot be done from the context or default alone,

the resolved constant form can be used to explicitly specify a typq or a subtype.
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RULES

Context Resolution

If a type or subtype unresolved expression appears:

a) on the right hand side of an assignment, It Is resolved to the subtype of the left hand side.

b) as an actual parameter, it is resolved to the specified type or subtype of the corresponding
formal parameter, if there is no ambiguity.

c) within a constructor, it is resolved to the component subtype of the constructed subtype.

d) in a resolved constant form, it is resolved to the specified type or subtype.

e) for unresolved float expressions, which appear as one operand of a built-in binary float
operator (+, -, *, /, **, relationals), the precision is resolved to be equal to that of the other
operand.

Default Resolution

When a subtype cannot be resolved from context, in the following cases, a default subtype Is used.
For an expression with value v, the default- subtype for various types is shown below.

INT the -default subtype is INT(v..v)

ENUM... I the default subtype is ENUM[...I

FLOAT the default subtype is FLOAT(p,v..v) where p is the maximum of the
default precisions of all the float literals that are part of the manifest
expression

STRING[ENUM[... 11 the default subtype is STRING[ENUM[ ... ]] (len) where len is the
number of components ir, v

Explicit Resolution

When a type or a subtype cannot be resolved from context or default, -the manifest expression or
constructor is written as a resoLved constant. The unresolved expression preceding the # is resolved,
if possible, to the type or subtype following #.

NOTES

The rssolved constant form can always be used to resolve in erpression with en ambiguous type or subtype.
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6. STATEMENTS

statenent

C identifier I *unlabeled 
statement -

j statenient
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61 ASSIGNMENT STATEMENT

The assignment statement is used to-copy the value of an expresiomn into a va~riable.

RULES

The expnression must have the same type as the variable; that type must be assignable (see Section
4.3).

Elaboration of the assignment statement replaces the current value of the variable with the value
of the expression.

The value of the expresston must satisfy any subtype constraints- of the variable (e.g., range,
precision, array bounds)% otherwise, the appropriate exception is raised.

NQTES

Entire arrays, spray-slices, and records may be assigned insa sintgle assitnirnit.

For rules concrirning the assignment of built-in types, see Appendix C, For rules concerning assignment of user-defln~ed types,
we. Section 13.2.

EXAMPLES

VAR x,y : INT( 1.-10-)-;
VAR al,a2 :ARRAY INT(1.10) OF BOOL;

al ::f(al);
a2 ::al;
W-1-.5) a2(3..7);

:4 :-= 3;
y :~x +
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6.2 BEGIN STATEMENT

2

The begin statement can be used to group together a sequence of related statements. Since the
begin statement introduces a new open scope, it is also a convenient means for localizing declarations
to the sequence of statements where they are needed.

RULES

The begin statement is elaborated by elaborating its body.

NOTES

All compound declarations and compound stefements contain bodies It is therefore unnecesary to write a begin statement in
those contexts in order to achieve trouping of multiple statements into a lingle Statement or to achieve a new scope for
declarations.

EXAMPLES

BEGIN
% swap record components
VAR x : RECORD ra,b : INT(1..10)];
READ (infle, x);
BEGIN

CONST t := x.a;
x.a := x.b;
x.b := t;

END;
WRITE (Outfile, x);

END;
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6.3 IF STATEMENT

26 2

L ELSEIF expression THEN body

The if statement selects one of several alternative bodies for elaboration, based on the value of
one or more boolean expressions.

RULES

Each expression must have type BOOL

Elaboration of an if statement proceeds by elaboration of each expression in order until either an
expression with value true or a final ELSE is reached; then the corresponding body is elaborated. If
no expression has value true and no final ELSE is present, none of the bodies Is elaborated.
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EXAMPLES

IF x < y THEN
CONST t x;
x := y;
y : t;

END IF;

IF i < j THEN
k ::i;

ELSE
k J;

END IF;

IF flag THEN
i := i + ;

ELSEIF J < 0 THEN
i := 1;

ELSEIF k < 0 THEN
1 :=2;

ELSE
1 I:-F1;

END IF ;
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6.4 CASE STATEMENT

The case ~statementalosabdtobseetdfreboainfmonor oeatrae

T 26

26
e xpress'on2

bodies, based on the value of a single expression.

RULES
Between each WHEN and => is a list of value labels. A value label can be eitoder an epression (a

single value Jabel), or a range (a r anFpe value label). The expressions in all value labels and the
expression followit, g CASE must be of the same type. If only single value labels appear, the type must
be one for which =is defined. If any range value labels appear, the type must be one for which =and
( are defined.

Elaboration of a case staenmtnt consists of the following steps:
a) The value of the expression following CASE is compared to the values of the value labels. A

match is found if the value of the CASE expression is either equal to the value of a single value
label or is within the range of a range value label (see Sectior, 4.1.7). The order in which value
<abels are examined is undefined.

b) If one or more matches are present, then the body associated with one of the matching,
labels is elaborated.

c) If no match is found and the ELSE is present, the body following ELSE is elaborated.



d) If no match Is found and the ELSE is no.t present, the XCASE exception Is raised.

When more than on# matchint value label is fourd, it cannot be predicted which of the bodies associated with the matching

label' will be elaborated.

Use of the cose teemenft for user defined types Is described in Section M1.

EXAMPLEI
VAR i : INT(-10..lO);

CASE i
WHEN 0 > s := "ZERO-;

WHEN -10..] 2> s ,= "NEG";

WHEN 1..5 z> s :* "SMALL";

ELSE => s :" "LARGE";

END CASE;

VAR U : UNION E

a : INT(..10),
b : BOOL,
c : INT(-5..

5) ]

CASE u.TAG
WHEN 'a ) u.a := u.a + 1;

WHEN lb => u.b := NOT u.b;

WHEN 'c => U.C := -u.c;

END CASE;

CASE TRUE
WHEN J>=j => max :i 1;
WHEN j>=i > max :J;

END CASE;
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6.5 REPEAT STATEMENT

C 12
$1a:e" e'rr

Fop dentfie REVRSEsubtype

26
L' expression

2

The repeat statement a:,ows a body to be elaborated zero or more times. The for phrase has an
index that takes on successive values of the specified subtype. The while phrase is used to achieve
conditional repetition.

RULES

For Phrase

The identifier, called the indexi is defined as a variable with the specified subtype in the scope of
the repeat statement. The index is treated as a readonly data item within the body (see Section 4.2).

Elaboration of a repeat statement with for phrase proceeds as follows. The index is created
before the. first repetition. During the first repetition, the index has the lowest value of the subtype
(i.e., .MIN). For each subsequent repetition, the index will have the successive value of the subtype
(via SUCC) until the last value (.MAX) is reached. If REVERSE is specified, the index has the value
.MAX for the first repetition, and has successive values (via PRED) until the last value (.MIN) is
reached.

While Phrase

The expression must have type BOOL. Elaboration of the repeat statement with a while phrase
repeatedly elaborates the body while this expression is true. The value of the expression is tested
prior to each elaboration of the body.

NOE
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The index is local to the repeat statement, i.e., neither its definition nor it& value Is directly ,vailabkt outside the repeat
fistemont If the subtype of the index has no values the body is not elboretsd.

Additional termination conditions can be inserted anywhere wilhin the body of a repeat sMement by the conditional use of on
e;dt statement (see Section 6.5).

Use of the repeat statement for user-defined types in described in Section 137.

EXAMPLES

r := 0;
q 0;
WHILE y <= r REPEAT

r r - y;
q : q + 1;

END REPEAT;

VAR a : ARRAY INT(I..n) OF INT(i..n);
FOR I : INT(I..n) REPEAT

a() := i;
END REPEAT;
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6.6 EXIT STATEMENT

The extt statement terminates the elaboration of an enclosing compound statement.

RULES

I The identifier must be known as a matching identifier.

Elaboration~ of the exit statement causes the elaboration of the compound statement bracketed by
the matching identifier to be terminated.

NOTES

An exit statement cannot be used to transfer control out of a compound dedrfAn (procedure, function, etc), since matching
ientifiers are novet' inherited by closed scopes.

EXAMPLES

j =0
search FOR i: INT(1..n) REPEAT

IF a(i) v THEN

t'XI- search;
END IF;

END REPEAT search;
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6.7 RETURN STATEMENT

leturn
statement

~j~IF~e26
RE71' * slon

The return statement terminates the invocation of a compound declaration (i.e., procedure,

function, task, or capsule).

RULES

Elaboration of a return statement causes elaboration of the smallest enclosing procedure, function,

task, or capsule to be terminated.

Expression must be present if the terminated construct is a function and may not be speclfied'for

any other construct. The type of the expression :must be the same as that of the function result (see

Section 7.2).

NOTES

A return statement is not needed for procedures, tasks, and capsules whose only "return point* is at the end of the body. The

elaboration of a function must terminate through a return statement (or by raiuing on exception).

EXAMPLE

FUNC search (a : ARRAY INT OF INT, v : INT) 0> INDEXOF(a);
FOR i : INDEXOF(a) REPEAT

IF a(i) = v THEN
RETURN i;

END IF;
END REPEAT;
RAISE search-fai lure;

END FUNC search;
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6.8 GOTO STATEMENT

I The goto statement causes elaboration to continue at a specified statement.

RULES

The identifier mnust be known as a goto label. Elaboration of the goto statement causes
elaboration to continue at the statement labeled by the goto label.

NOTES,

Because the %*o label of the larit statement must be local or declared in an enclovint scope, no transfer Is allowed into

bodies or between alternatives of an If or case statement

A Soto statement cannot be used to transfer control out of a compound declaration (Le., procedure, function, ate, since Soto
labels are never i-th," d by closed scopes.

EXAMPLE

sort : : INTU1.n-1) REPEAT
W~) > W~+1) THEN
CONST t : ~)

W(+1) := t;
- GOTO sort;

END IF;
END REPEAT;

:J-
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7. PROCEDURES, FUNCTIONS, AND PARAMETERS
Procedures and functions are major language features for modularizing programs. Procedures and

functions are defined by deferred declarations. Since procedures and functions are deferred units,
they are elaborated when They are invoked, rather than when their declaration Is encountered.

A procedure is elaborated when a procedure invocation statement occurs. A function Is elaborated
when a function invocation occurs in an expression.

Procedures and functions may be parameterized; when they are, actual parameters are bound to
corresponding formal parameters of the procedure or function decloration at the time of invocation.
This correspondence is based on the positions of the parameters in the formol and actual parameterf lists.

Procedure and function declarations, like all deferred declarations, are closed scopes. Any
variables from the enclosing scope used by a procedure or function must be explicitly Imported.

I
I
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7.1 PROCEDURE DECLARATION AND INVOCATION
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RULES

Identifier or definable symbol 1 is defined to be a procedure In the scope in which the
procedure declaration appears. Identifier or definable symbol 2 must be Identical to Identifier or
definable symbol J.

Elaboration of a procedure invocation statement proceeds in the following order:

a) actual parameters are elaborated;

b) actual parameters are bound to the formal parameters of the named procedure (see Section
7.3%; and

c) the body of the named procedure is elaborated.

NOTES

A procedure declwatlon is a closed scope (see Section as); the formal paramelor names ore dofi d In this scope.

Procedures may be overloaded and may be eneric. Overloodin, generics, and use of the translation time property list are
discussed in Chapter I I Use of definable symbol names is discussed ir, Section 132.

The order in which scdus! parameters are elaborated and bound is unspecified.

EXAMPLE

PROC swap (VAR xy : Iv7 ;
CONST t := x
x Y
y :=t;

END PROC swap;
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7.2 FUNCTION DECLARATION AND INVOCATION

function
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A function differs from a procedure in that a function produces a result, a temporary data item
(see Section 5.1). This result is obtained during elaboration of the body by elaborating a return

statement which specifies the value of the result to be produced. A function Is elaborated when a

function invocation occurs a3 an operand In an expression.

RULES

Identufer or definable symbol I Is defined to be a function in the scope In which the function

declaration appears. Identifier or definable symbol 2 must be the same as Identifier or definable

symbol I.

The type or subtype following =0 is known as the result type or subtype. The result type or the

type of the result subtype must be assignable.

Elaboration of a function inuocation primary proceeds in the following order.

a) actual poarameters are elaborated;

b) actual parameters are bound to the formal parameters of the named function (see Section 7.3%

c) the body of the function is elaborated until a return statement is encountered;

& a result temporary data item is created, whose subtype is the result subtype (if specified) or
the subtype of the expression in the return statement (if a result type is specified% and

e) the result of the function is produced by assigning (via :=) the value of the expression in the
return statement to a result temporary data item. The := definition used is the one known in
the scope where the function is defined.

There must be no way to reach the point immediately after the last statement In the body of the

functi)n, i.e., elaboration must always complete by the use of a return statement.

Additional rules for the return statement are given in Section 6.7, and (for side-effects and

normality of functions) in Section 7.2.1.

NOTES

A fnction declarston is o closed scope (see Section a5), the formal parameter names and the result variable are defined in this
scope.

The result subtype may depend on the subfypes and values of the acfti piaraneers.

Functions may be overloaded and may be gor ric. Overloading, lenercs, and the use of the translation time property list Is

discussed in Chapter I I Use of definable symbol names is discussed in 132.

The order in which scuol parwetes are elaborated and bound is unspecified.

EXAMPLE

FUNC hypot(sidel, side2 : FLOAT) => FLOAT;
RETURN sqrt (sldel**Z + slde2**2);

END FUNC hypot;
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7.2.1 NORMALITY AND SIDE-EFFECTS

There are two kinds of functions: normal and abnormal functions. The result of the invocation of
a normal function depends only upon the values of the actual parameters. Several invocations of a
normal function with the same actual parameter values may be replaced by the translator with a single
invocation (this Is called common subexpression elimination). The result of the Invocation of an
abnormal function can depend upon the values of variables other than those in the actuaL parameters.
All abnormal functions should be preceded by the reserved word ABNORMAL. Both abbreviations arid
types are assumed to be normal; the result of Invoking an abbreviation or type should depend only
upon the values of the actual parameters.

A function is said to have a side-effect if the function modifies any dlata whose lifetime is longer
than the function invocation. Programs are more understandable, reliable, and verifiable when
functions have no side-effects. However, there are cases where having side-effects is useful. The
language allows normal functions to have side-effects providing these side-effects are restricted to
modifications of data items that are local to the body of a capsule in which the function is also local.
For normal functions with side-effects, the user must ensure that any common subexpression
elimination will not have an undesired effect upon program behavior.

RULES

The order of elaboration within expressions is not defined. This means that the order in which
side-effects occur within expressions is not guaranteed.

If more than one exception could be raised while elaborating an expression, which of these
exceptions is actually raised is not defined.

If there are several invocations anywhere in a program of a normal function, a type, or an
abbreviation whose corresponding actual parameters have the same value, these Invocations may be
replaced (by a translator) by a single invocation which occurs at the point of the first of these
invocations.

A normal function may have only CONST and READONLY formal parameters.

If a normal function has an imports list, then:

a) the function must be local to a capsule body;

b) variables imported by the function must be defined locally In the capsule body in which the
function is local;

c) no invocations of the function may appear anywhere within the capsule in which the function Is
defined; and

d) no variables imported by a normal function may be exported from the capsule.

NOTES

Failure to mark an abnormal function, or the presence of an abnormel abbreviation or type, mesni that common subexprsslon
elimination may prnduce undesired results.

The only normal functions which have no paramelers art functions which always produce the same constant value.
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EXAMPLES

1) A normal function with no side-effects

FUNC fact (1 : INT) z> INT(1..10000);
IF i _-6 THEN RETURN I;

ELSE RETURN i * fact(i-I);
END IF;

END FUNC fact;
2) A normal function, fact, with a restricted side-effect which records the number of times It is

called. This count is returned by an abnormal function, factcnt.

CAPSULE c EXPORTS fact, factcnt;
VAR cnt : INT(0..10000) := 0;

FUNC fact(i : INT) => INT(1.10000) IMPORTS cnt;
% The result depends only on the value of
% the parameter, i.

VAR r : INT(I..10000) := 1;
cnt := cnt + 1;
FOR J : INT(O..l) REPEAT

r := r * J;
END REPEAT;
RETURN r;

END FUNC fact;

ABNORMAL FUNC factcnt => INT(0..10000) IMPORTS cnt;
% The result, r, is not computed based only upon the
% parameters (of which there are none).

RETURN cnt;
END FUNC factcnt;

END CAPSULE c;

3) A normal function with a restricted side-effect -- a memo function

CAPSULE fmemo EXPORTS f;

VAR oldx : INT(1..100) := 1;
VAR oldy : INT(1..100) := realf (oldx);

FUNC f (x : INT(1..100)) 0) INT(1..100) IMPORTS oldx, oldy;
IF x /= oldx THEN

oldx :X x;
oldy := realf (oldx);

END IF;
RETURN oldy;

END FUNC f;

FUNC realf (x : INTO1.I)) 0> INT(I..190);

END FUNC realf;

END CAPSULE fmemo;
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4) An abnormal random number generator function

CAPSULE randcap (initial-seed : INTD EXPORTS random;
VAR seed : INT(-1000..1000) := initial-seed;
ABNORMAL1 FUNC random0~ INT(-1000..1900) IMPORTS seed;

seed := next(seed);
RETURN seed;

FUNC next (1 : INT(-1000..1000)) 0> INT(-1fl00..1000);
% computes next random number

END FUNC next;
END FUNC random;,

END CAPSULE randcap;

5) A symbol table

CAPSULE symtab EXPORTS look-..up;
CONST size :~500;
ABBREV sym :STRINGEASCII] (81;

VAR limit :INT(0..size) := 0;

VAR table :ARRAY INT(1..size) OF sym;

ABNORMAL FUNC look-up (s : sym) => INT(0. .size)
IMPORTS READONLY limit, READONLY table;

FOR i: INT(1..size) REPEAT
IF table(i) =s THEN

RETURN 1;
END IF;

END REPEAT,
RETURN 0;

END FUNC look-.up;

FUNC insert (s :sym) => INTO..size)
IMPORTS limit, table;

CONST i : lookup (s);
IF i /= 0 THEN

RETURN 1;
ELSE

limit :=limit +' 1;
table (limnit) ::s;
RETURN limit;

END IF;
END FUNC insert;

END CAPSULE symtab;
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7.3 FORMAL AND ACTUAL PARAMETERS

forrm 1

parameters

Parameters are used to pass information between a specific invocation of a deferred unit (i.e., aprocedure, function, task, capsule, type, or abbreviation) and the deferred unit.

When a deferred deckaration specifies a list of forme parameters, each invocation of the deferred

I unit defined by the declaration must then supply an actual parameter for each formed parameter.
; When the deferred unit is invoked, each formal parameter is bound to its associated actual paramneter.
~The kind of binding is specified for each formal parameter by means of a binding class.

f Teeare forbinding clse:tofrpassing information into a deferred unit (CONST and
READONLY); one for passing information out (OUT); and one for passing information both In and out
(VAR).
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RULES

Association of Actual and Formal Parameters

The number of actuat'parameters in an invocation must be equal to the number of formal

parameters of the invoked deferred unit. Actual parameters are associated with formal parameters
positlonally.

Type Checkin

Each actual parameter must have the same type as that specified for the corresponding formal
parameter (or the type of the subtype specified).

Vinding of Actual Parameters to Formal Parameters

If a formal parameter specifies a type, it acquires the subtype of the actual parameter with which
it is bound.

If a formal parameter specifies a subtype, the formal parameter has that subtype; if the binding
class is VAR or READONLY the actual parameter must have an equal subtype (otherwise the XSUBTYPE

exception is raised).

The binding class is CONST when no binding class is explicitly specified. The actual parameters
associated with VAR and OUT formal parameters must be variables. For CONST and OUT, the parameter
must have a type for which assignment is defined. Rules for each binding class are given here..

CONST The formal parameter Is a ldcal constant to which the value of the actual

parameter is assigned (via :=).

VAR The formal parameter is a local name for the actual parameter variable.

OUT The formal parameter is a local variable which is assigned (via :=) to the actual
parameter variable upon normal completion (i.e., completion other than as the
result of an unhandled exception) of the invocation.

READONLY The formal parameter is a local name for the actual parameter. The formal
parameter is treated as a readonly data item.

For CONST and OUT formal parameters, the definition of assignment used is one known in the
cope where the formal parameter definition appears.

Order of Binding, e"

The order in which actual parameters are bound to formal parameters Is undefined. A subtYne
specified for a formal parameter may not depend uon Aue or sutypen othr rmal
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NT ES

-Since there are two input binding clase, CONST and READONLY, there ore som, guidelines on when each should be used.CONST Thar-formolalm~eter is a copy off he aduLWP.*r" .e. In mot cases, this is the correct binding o use, sinceit prevets$ the occurrence of abassing and unintended sharing.READONLY The formal pramneter is a local name for the actual paet1r. This binding class must be used when
a) 0f- - 4vr type is a type for which assignment is not defined; or
b) sharing is ovotred (ago Secion 1086).

When irto -,bjoctv are to be passed as inut the CONST binding may be loe efficient (since copying Is involved) than theREADONLY binding. However, in many cases, a fronssor con optimize CONSr bindings so that no copy is required.
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8. CAPSULES
Capsules are the basic unit of separate translation (see Section 3.1) and can also be nested within

other language constructs. Capsules can be used to create common data pools, libraries, and abstract
data types, as well as indepi~ndent, executable programs.

A capsule, like a procedure, is a deferred unit which is invoked. Capsules differ from procedures
in that definitions local to a capsule body may be made known outside it. Selected definitions can be
made locally known in each scope where the capsule is invoked. The body of a capsulo can contain
statements as well as definitions. These statements are elaborated ' initialize variables and constants
defined in the capsule.

There are two ways in which a capsule can be invoked.

1) It can be invoked as new. Each such invocation will cause the capsule to be elaborated. Local
variable and constant declarattons in the capsule body create different variables and constants
at each new invocation. Capsules invoked as new may be parameterized. Actual parameters
are supplied each time a capsule is invoked and serve to specialize the capsule.

2) It can be invoked as old. In this case, all old invocations will reference a single version of the
capsule which was elaborated upon entry to the scope where the capsule was defined. Each
old invocation will reference the same set of variables and constants from the capsule. Capsules
which are invoked as old may not have parameters.

NOTES

Defindtions that are known in a scope come from three sources. local definitions written in the scope, definitions which become
locally known by invoking a capsule in that scope, and definitions whizh are available (either implicitly or through an Imports list)
from the enclosin t scope,
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8.1 CAPSULE DECLARATION AND INVOCATION
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A capsule declaration is invoked to make selected definitions In Its body known In the scopes
where Invocations of the capsule appear.

RULES_

Casule Declaration

Identifier I in, a capsule declaration is defined to be a capsule in the scope in which the capsule
declaration appears. Identifier 2 must be the same as identifier I.

A capsule declaration which is invoked as old or which is a translation unit may not -e any
formal parameters. A capsule may not have formal parameters of the OUT binding class.

Capsule Invocation Declaration

The capsule with name identifier I is invoked.

The lifetime of actual parameters passed to RK.,ANLY and VAR for; -i par~meters must be greater
than or equal to the lifetime of the capsule invocation declaration containing those actual parameters.

A- capsule invocation declaration has two effects: it causes elaboration of a capsule declaration
and it makes selected definitions visible. There are two ways in which a capsule may be Invoked:

) As a new invocation (if NEW is specified).
b) As an old Invocation (if NEW is not specified).

Elaboration of a new capsule invocation declaration consists of

a) elaborating the actual parameters;

b) binding the actual parameters to the formal parameters of the Invoked capsule (see Section 7.3)
and

c) elaborating the body of the invoked capsule.

If there are any old invocations of a capsule, the body of the Invoked capsule is elaborated once
upon entry to the scope in which the capsule declaration appears.

A capsule invocation declaration makes selected definitions that are locally known in the body of
the capsule also locally known in the scope where an invocation of the capsule appears (see Section
8.2). For new invocations, these definitions are the ones that have been created during elaboration of
the caPSLle invocation declaration. For old invocations thece definitions are the ones that were
created upon entry to the scope whete the capsule declaratio , appears.

The lifetime of any definitions made known by a new cap u.le invocation declaration Is equal to the
lifetime of the capsule invocation declaration. The lifetime of any definitions made known by an old
capsule invocation is equal to the lifetime of the declaration of the invoked capsule.

If an Invocation includes a RENAMING list, there must be a definition known (as a result of the
visible list) for each identifier 2 and definable symbol 2 that appear's. For each item in the list of the
form

name 2 TO name 3
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all definitions that would be known as name 2 are known instead as name 3 in the scope where i he
capsule invocation declaration appears. If name 3 is a definable symbol, all definitions of name 2 must
satisfy all restrictions upon definitions of that definable symbol.

If EXTERNAL is specified; then identifie I must be the name of some separate translation unit. If

EXTERNAL is not specified, a definition for identifier I must be known in the scope in which the
capsule invocation declaration appears.

If there are several capsule invocat:on declarations local to the same scope, then none of these

declarations may contain any uses of the definitions that it, or any later capsule invocation

declaration, makes known.

NOTES

A capsule dedaretion is the only language construct to inckude an export list.

A capsule dcdaration is a closed acope. The only eefinitions which ore local to a capsule dedaration, as opposed to the body of
the capsule, are formal parameter definitions (sac Section 3.5).

Varlables declared in the copsule that are not exported act as "own* data of the capsule. Like all date in the capsule, such

val 6Jes come into existence each time the body of the capsule is elaborated; the statements In the capsule body may be used to

initialize them.

Translation time property lists are used to overload cspsuls and to create generic capsules.

EXAMPLES

1) Common group of declarations.

CAPSULE device-tables (ntty : INT, nprint : INT) EXPORTS ALL;

CONST console := 1;

VAR tty.tab : ARRAY INT(1 .. ntty) OF Ity-info;
VAR printer-tab : ARRAY INT(O .. nprint) OF print-info;

FOR i : INT(O .. ntty) RtFPEAT
init-tty (try-tab(i), i);

END REPEAT;

FOR i : INT(I .. nprint) REPEAT
init.printer (printer-tab(l), i);

END REPEAT;

END CAPSULE devlce-tables;

% Typical use
EXPOSE ALL FROM NEW device-tables (10,2);
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2) Abstract data type example.

CAPSULE queues EXPORTS queue, lnlttqueue, enter, remove;

ABBREV.elem : INT(M..255);

TYPE queue (n : INT) : RECORD( first,last : INT(0 .. n-1),
num : INT( .. n),
items : ARRAY INT(O .. n-i)

OF elem];

PROC init-queue (VAR q : queue);
ASSERT q.n > 0;
q.first :=0;

q.last := 0;
q.num := 8;

END PROC init-queue;

PROC enter (VAR q : queue, r : elem);
ASSERT q.num < q.n;
q.items(q.last) := r;
q.last (q.last + 1) MOD q.n;
q.num q.num + 1;

END PROC enter;

PROC remove (VAR q : queue, OUT r : elem);
ASSERT q.num > 0;
r := q.items(q.first);
q.first := (q.first + 1) MOD q.n;
q.num := q.num - 1;

END PROC remove;

END CAPSULE queues;

3) Exposing a definition makes the definition locally known and, thus, able to be exported.

CAPSULE c EXPORTS x;

VAR x ...

END CAPSULE c;

CAPSULE b EXPORTS X,y; % only locally known definitions
% can be exported.

VARy ...
EXPOSE x FROM c; % makes x locally

% known in b
END CAPSULE b;
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8.2 VISIBLE LIST

list

Visible lists control the availability of the definitions that are local to the body of a capsule, to
those scopes where the capsule is invoked. Visible Lists appear in two places:

a) After the word EXPORTS in the header of a capsule dec ation Thk isible List exports
selected definitions, which are local to the body of the capsule, to invocations of the capsule.

b) After the word EXPOSE in a capsule invocation declaration. This visible list makes selected
definitions which were exported from the invoked capsule, known in the scope where the
capsule invocation declaration appears.

RULES

Visible List in a Capsule Declaration

If ALL is specified, all definitions which are local to the body of the capsule, except goto label
definitions, are exported.

If NONE is specified, no definitions ore exported.

If a list is specified, all definitions which are local to the body of the capsule, and whose names
appear In the list, are exported. Names of goto labels may not appear. There must be a definition,
local to the body of the capsule, of each name that appears in the list. The name of any variable
definition may be preceded by READONLV; in this case the variable is treated as a readonly data item
in those scopes where it is exposed.
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Visible List in a Capsule Invocation Declaration

If ALL Is specified, all definitions exported by the invoked capsule are made known.

If NONE is specified, no definitions are made known.

If a list Is specified, all definitions which were exported from the invoked capsule and whose
names appear in the list are made known. There must be an exported definition for each name that
appears in the list. The name of any variable definition may be preceded by READONLY; In this case

the variable is treated as a readonly data item In the scope where the capsule invocation appears.

NTES.

The capability of specifying ALL in a viaible list makes it easy to create common data pools and libraries. Exporting no

definitions is useful for main translation units. Exporting some definitions is useful for the creation of abstract data types.

When a type ia made visible, assignment and selection operations are not automatically mode visible. However, attribute Inquiry

for that type is automatically made visible when the type is made visible.

Capsule formal parameters and definitions which are available from the enclosing scope, may not be exported since they are not

local to the capsule body,

The visible list of the capsule Invocation dedaret/on provides a convenient method of access control. For example, suppose the

capsule mnthjibrary has been defined as a library of mathematical functions. In one scope only some of the functions may need to

be known. The capsule might be invoked an

EXPOSE integrate, mean FROM math-library;

In some other scope a different set of functions might be needed. The Invocation there might be

EXPOSE sin, cos FROM math-library;
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9. EXCEPTION HANDLING
A major design criterion for this language is that it contribute toward the reliability of the systems

that it is used to develop. Toward this end, a language facility, called exception handling is provided
so that a user can gain cbhtrol and take appropriate action when a runtime error occurs. Both
user-defined and language-defined runtime errors can be handled in this way.

There are three parts to exception handling: the definition of an exceptional condition, called an
exception; the occurrence, or raisin. of the exception; and the handling of the raised exception.

Exceptions are either language-defined (see Appendix D) or defined by the user In an ezception
declaration. Exception names follow normal scope rules. Exceptions are raised explicitly by the
elaboration of a raise or reraise statement. Language-defined exceptions are also raised automatically
when an exceptional condition occurs during elaboration. The handling of an exception is achieved by
the guard statement, which allows the user to gain control when an exception is raised. The guard
statement consists of two parts: a guarded body in which an exception might be raised; and a set of
handlers which can handle exceptions raised in the guarded body. Separate handlers can be provided
for specific exceptions, and a general handler can be provided for all exceptions not handled
separately. When an exception having a handler is raised in the guarded body, the elaboration of the
guarded body is terminated and the body of the handler is elaborated. Elaboration of the guard
statement is completed when elaboration of the handler is completed.

Guard statements may be nested within one another. When an exception is raised, the guard
statement containing the guarded body in which the exception is raised is examined first. If i~t does
not contain a handler for that exception, then enclosing guard statements are examined for the
appropriate handler, starting with the innermost. The guard statement selected must meet two
criteria: it must contain a handler for this specific exception; and it must not contain a deferred
declaration which contains the raised exception.

If no enclosing guard statement is found before an enclosing deferred declaration is found, for all
deferred declarations except tasks, the search for a handler for the exception continues in the scope
containing the invocation of the deferred unit. In the case of tasks, the task activation is terminated
and no further searching occurs.

If the search for a handler causes completion of elaboration of the scope In which the exception
name is defined, the exception name is changed to XUNHANOLED and the search for the X..UNHANDLED
exception begins.

It is possible, within a handler, to reraise the exception which caused the elaboration of the
handler. This allows a local action to be taken before searching resumes for another handler for the
same exception.

When efficiency of generated code is more important than the guarantee of reliability, the
suppress pragmat can be used to suppress the raising of exceptions (see Appendix B).
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9.1 EXCEPTION NAMES

exceotion

declaration

Exception names are defined by the exception declaration.

RULES

Each identifier is defined as an exception in the scope immediately containing the exception
declaration.

NQTES

Exception names have Ike same scope rules as all other names (see Section 3.5).

Lanjua:.-defined exceptions (so* Appendix 0) are predefintd. No user-written exception declration is needed.

EXAMPLES

EXCEPTION stack-overflow, stack_underflow;

A
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9.2 GUARD STATEMENT

C 2
W~HEN Identifier => body 2

A guard statement allows the user to gain control and take appropriate action when an exception
is raised.

RULES

Each identifier between WHEN and 0> must be known as an exception. All identifiers In a guard
statement must be distinct.

Body I is known as the F.uarded body of the guard statement. Each body 2 is a handler for the list
of exceptions following~the preceding.WHEN. Body 3 following ELSE 0> Is a handler for all exceptions
not otherwise handled.

Elaboration of a guard statement consists of elaboration of the guarded body.

NOTES

An exception may only be explicitly referenced in a twd statement if the guLI$ stat ent is In a ecope in which the exception
mnme is known,

Tho semaentics f or findint a handler when an exception is raised is descrbod In Section 92a

EXAMPLE



122 Section 9.2 RED LRM 8 March 1979

GUARD
OPEN(infile, "filel", 'OLD);

BY
WHEN XFILENAME =)

rep'6rt( "Bad name-flel" );
WHEN XNOFILE =>

report( "Filel does not exist" );
WHEN 'X.FILE =>

report( "Attempt to open infile twice" );
ELSE =>

report( "Unknown error when opening infile" );
END GUARD;

9.3 RAISING OF EXCEPTIONS

!I raise
St atement

tC

ji The raise statement can be used to raise an exception.

RULES

The identifier must be known as an exception.

When an exception is raised, a search is made for the smallest enclosing:

a) guarded body of a guard statement;
b) deferred declaration; or
c) body. in which the exception is defined.

If the body of a guard statement is found and that guard statement has a handler for that
exception (either specifically or via an ELSE clause), elaboration of the guarded body is terminated
and the handler for that exception is elaborated. If the guard statement does not have a handler for
that exception, the elaboration of the guard statement is terminated and that exception is reralsed at
the place where the guard statement appears.

If a deferred declaration which is not a task declaration is found, the Invocation of the deferred

declaration is terminated and the exception is reraised at the point of invocation of the deferred unit.
If a deferred declaration is found which is a task declaration, the task activation is terminated.

If the body is found in which the exception is defined, the XUNHANDLED exception is raised.
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NOTES

An exception may only be raised where its name is known, Certain language-definedl operations may raise languole-dofintcl
excoplions,

The transiator will issue a warning massage if it discovers that an exception will always be raised at runtime. The translator
will produce a list, f or each deferred declaration, of exceptions which could be raised but not handled when the defefred
declaration tit invoked.* If is possible to raise the X...TERMINATE exception in another activation (see Section 10.2).

EXAMPLES

1) Handling an exception raised in an invoked function.

FUNC sqrt (x :FLOAT) => FLOAT;
ASSERT x >= 0.0;

END FIJNC sqrt;

GARD
q :=sqrt Cr);

By
WHEN X..ASSERT => q :=0.0;

END GUARD;

2) Given two procedures, actioni and action2, which both do the same thing; first try actioni and,
if it fails, then try action2.

GUARD
actioni;

BY
ELSE => action2;

END GUARD;

3) Changing to a more meaningful exception.

GUARD
insert (table, new-..entry);

BY
WHEN X...ASSERT => RAISE table-.error;

END GUARD;
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9.4 RERAISING EXCEPTIONS

! Statement

The eeraise statement permits some action, such as clean-up or statistics gathering, to be taken
when an exception is raised, before the exception propagates outside the guard statement.

The reraise statement must be contained in the body of a handier of a guard statement.

Elaboration of the reraise statement is equivalent to elaboration of

RAISE x;

where x is the exception being handled.

NOTES

Since an exception must be raised during elaboration of a guarded body of a guard slefement in order to be handled by the
handler of that guard statement, the reralalng of an exception in a handler does not cause recursive elaboration of the some handler
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EXAMPLES

1) How to do local cleanup when an exception is raised.

BEGIN
OPEN (infile, *XYZ", 'NEW);
GUARD

% Process infile

BY
ELSE =)

CLOSE (infile, 'DELETE);
RERAISE;

END GUARD;
CLOSE (infile, 'SAVE);

END;

2) How to retry an action n times before failure occurs.

retry FOR i : INT(O .. n) REPEAT
GUARD

action;
EXIT retry; % successful completion

BY
ELSE =>

IF i = n THEN
RERAISE;

END IF;
END GUARD;

END REPEAT retry;
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I
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10. MULTITASKING
The multitasking facilities provide a means for scheduling and synchronizing multiple concurrent

elaborations. The basic unit of multitasking is a task. which is defined by a task declaration. A task is
invoked using the task invocation statement which produces an activation of the task. Each activation
Is "named" by a unique activation variable. Elaboration of task activations Is under the control of
schedulers which determine when elaboration of each activation can proceed.

Tasks can communicate in two basic ways: by message passing and by the use of shared
variables. Message passing works well for distributed systems and contributes to program reliability.
Several task activations can communicate via shared memory simply by importing the same variables,
or by passing these variables as VAR or READONLY parameters. No automatic mutual exclusion Is
provided for shared variables; this must be accomplished by the user. The region statement is
provided for this purpose.

Clocks and delays are also provided, both for real time and for activation times.

Non-busy multi-way waiting is available to wait for messages and for delays.

There are two levels of multitasking facilities

1) High-Level - These facilities will be used for most applications. Included here is a priority
scheduler (via ACT variables), message passing (via MAILBOXes), and mutual exclusion (via
DATALOCKs). These facilities are described in this chapter.

2) Low-Level - These facil;ties are provided to allow system programmers to define new
schedulers and synchronization schemes for applications where the standard high-level facilities
are not appropriate. 'Once defined, these new facilities can be used by application programmers
in a manner that is similar to that used for the built-in high-level facilities. Low-level facilities
are described in Chapter 14. Included there is a detailed description of the semantics of the
create, wait, and region statements. Also included is a discussion of the LATCH data type, the
low-level details of the ACT priority scheduler, and of techniques for handling hardware
interrupts.
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10.1 TASK DECLARATION, TASK CREATION, AND ACTIVATION VARIABLES
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TASK t (1 : INT);
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END TASK t;

VAR av : ACT; % an activation variable

CREATE t(3) NAMED av; % invokes t with actual parameter 3
% and associates activation
% variable av with this
% activation of t

In addition to "naming" the activation, the activation variable determines which scheduler is to
control the activation. The type of the activation variable is used in this determination. The ACT type
selects the built-in priority scheduler discussed in the next section. Other activation variable types
can also be defined for other kinds of user-defined schedulers (see Section 14.5). For example, a task
may be scheduled with a user-defined round robin scheduler as follows.

TASK t;

END TASK t;

VAR arr: RRACT;

CREATE t NAMED arr;

An activation variable can be either active or inactive. All activation variables are initialized to be
inactive. When a task activation is created, the activation variable which names the activation is
changed from inactive to active. When the activation is complete, the variable is changed back to
Inactive.

An activation having an active activation variable ,.an be either eligible to run or waiting. When an
activation is created, it is eligible to run. Some operations (e.g., a DELAY) will cause an activetion to
wait.

Each step in the elaboration of a program is part of some activation. When a program is run, the
system creates, a single main activation which elaborates the body of the main capsule. Any activation
can create other activations by elaborating a task invocation statement.

The language ensures that an activation of a task will not run longer than lifetime of the task's
declaration. When the scope in which a task is declared is about to be left, the current activation
waits until all activations of the task are complete.
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Task Declaration

Identifier I is defined to be a task In the scope In which the task declaration appears. Identifier 2

must be the same as identifier I.

A task may not have OUT formal parameters.

The lifetime of a task begins at the beginning of elaboration of the scope in which it Is declared

and ends at the end of elaboration of the scope in which it is declared.

When an activation is about to leave the scope of a task declaration,.it waits for all the activation
variables associated with activations of that task to be inactive.

Task Invocation

Elaboration of a task invocation :tatement consists of

a) elaboration of the actuat parameters;

b) binding of the actual parameters to the formal parameters of the named task (see Section 7.3);

c) preparing the activation variable to elaborate the body of the task; and

d) changing the variable from inactive to active. If the variable is not Inactive, then the
X-CREATE exception is raised.

The lifetime of the activation variable in a task invocation statement must be greater than or equal
to the lifetime of the invoked task.

Any actAal parameters passed either READONLY or VAR must have a lifetima gr:aeic i,7v r equal
to that of the invoked task.

NOTES

A more detailed description of the semantics of the task Invocaion statement can be fovuw . S 4; .5,A
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10.2 THE ACT PRIORITY SCHEDULER

There is a built-in priority scheduler. Elaboration of all task activations whose activation variables
have type ACT is controlled by this scheduler. This section discusses the high level operations for the
ACT scheduler. Low level ACT operations are discussed in Chapter 14. Techniques for defining other
schedulers are discussed in Section 14.5.

ME

The result of the ME function is the activation variable of the activation that invokes ME.

Prioritie.s

Scheduling of task activations whose activation variables have type ACT is determined based on
priorities. Each activation has a priority which is an integer with subtype

INT(0..255)

Priority 0 is the lowest priority (the priority least likely to be scheduled) and priority 255 is the
highest priority (the priority most likely to be scheduled). The priority of an activation, av, can be
obtained by invoking the function

PRIORITY (av)

whose result is the priority of av.

The priority of any activation, av, can be set to value n, by invoking the procedure

SET-PRIORITY (av,n);

The initial priority of the main activation of a program is set by the user when the program is to
be run. If no priority has been explicitly set, the initial priority of other activations is equal to the

current priority of the creating activation.

Exterminate

Elaboration of the procedure invocation

EXTERMiNATE (a);

will cause the XTERMINATE exception to be raised in the activation currently associated with
activation variable a. The invocation'has no effect if a is inactive. If a is waiting, then it becomes
eligible to run.

Shec. du o rim

At any time, there will be some activations which are eligible to be run. The ACT scheduling
algorithm decides which of the activations are to be run. The language makes no assumptions about
the number of activations which can be run concurrently. On some target systems, at most one
activation will be running while on other systems, several activations can be running concurrently.

For the set of activations which are eligible to run, an activation with a higher priority will be
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scheduled before an activation with a lower priority and, for activations having the same priority,
those activations which have been eligible for the longest time will be scheduled over the other
activations.

NOTES

ME, PRIORITY, SET.PRIORITY, and EXTERMINATE or@ deeribmd in detail urodr the ACT type in Appendix C.10. The scheduling
algorithm is descrb d in detail in Section 14.2.

EXAMPLES

1) Setting priorities

TASK t;
. I .

IF Important THEN
SETPRIORITY( ME, PRIORITY(ME) + 10 );

ELSE
SETPRIORITY( ME, 10);

END IF;

END TASK t;

VAR ta : ACT;

SETPRIORITY( ta, 10 );
CREATE t NAMED ta;
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10.3 MESSAGE PASSING USING MAILBOX VARIABLES
Message passing is done via mailboxes. Activations can send messages to a mailbox, and other

activations can then receive these messages from the mailbox. A mailbox Is a uoriabLe having a
mailbox type. For example,

VAR m : MAILBOX[ STRING[ASCII](4) 1 (3)

Here, m is a mailbox of size 3 capable of holding messages, each having the subtype
STRINGASCII)(4). The size specifies that, at any time, up to 3 messages could have been sent but
not yet received.

A mailbox is initially empty (i.e. holds no messages). The SEND procedure Is used to send a
message to a mailbox. For example,

SEND(m, OMESP") ;

sends the message "MES1" to mailbox n. Additional messages can be sent to m by additional sends.
for example,

SEND(m,"MES2");
SEND(m, "MES3");

The RECEIVE procedure is used to receive a message from a mailbox. For example,

VAR v : STRING[ASCII] (4);

RECEIVE(mv);

will place the next available message from mailbox m into variable v. Messages zre stored in a mailbox
in order of arrival so that the first message to be received from a mailbox will be the first message
sent to the mailbox. In the above example the value of v after Invoking RECEIVE would be "MES1".

When a mailbox becomes full, no more messages can be sent. If an attempt is made to send a
message to a full mailbox, then the sender will wait until the mailbox is no longer full. If there is more
than one activation waiting as a result of attempting to send a message to a full mailbox, these
senders are queued in the order in which the sends were done. The first sender will therefore be the
first to complete the send. A similar queueing occurs when receives are attempted on an empty
mailbox.

Mailboxes with Size 0

When the size of a mailbox is 0, the sender can never get ahead of the receiver. For example,

VAR ml : MAILBOX[ STRING[ASCII](4) 3 (0);

In this case, the SEND(ml, "ABCD") will wait unless there is some receive request outstanding. In
this latter case, SEND(ml, "ABCD*) will send the message "ABCD, directly to the requesting
receiver.

RULES

Messages for mailboxes must have an assignable type.
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Messages sent to a mailbox and received from that mailbox are handled on a first in (i.e., first sent

r get the message from the i'th send.

The SEND and RECEIVE operations can also We used as waitint invocations in the walf statement (see Section 10.5).

In a typical program structure, each mailbox represent* a service which can have several *server" activations that actually do
the work. This structure allows the requester to be ignorant of the actual number of activations providing the service, and their
iclentities.

More details about the MAILBOX type can be found in Section 14.1.

The MAILBOX type, along with the SEND and RECEIVE procedurs of* described in detail in Appendix CA! 1.

EXAMPLES

1) Simple producer -consumer.

VAR m : MAILBOXLsJ (5);

TASK produce IMPORTS m, intile, READONLY sdone;
VAR data : s;
WHILE NOT EOF(infile) REPEAT

READ(inflle, data);
SEND(m, data);

END) REPEAT;
SENO(m, sdone);

END TASK produce;

TASK consume IMPORTS m, outfile, READONLY sdone;
VAR data :s;
WHILE TRUE REPEAT

RECEIVE Cm, data )
IF data =sdone THEN

RETURN;
END IF;
WRITE(outftle, data);

END REPEAT;
END TASK consume;

VAR pr, cs :ACT;

CREATE produce NAMED pr;

CREATE consume NAMED cs;
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10.4 CLOCKS AND DELAYS
There are two basic kinds of clocks: a single real-time clock and a clock for each activation. The

real-time clock measures the elapsed real-time since the program began to run. An activation clock
measures the total real-time that a particular activation has been actually running since it was created.
All times are positive integers and are measured in ticks. Ticks are an Implementation-dependent unit.
There are standard integer configuration constants

MILLISECONDS
SECONDS
MINUTES
HOURS

whose values are the (closest integer to the) number of ticks that occur in each millisecond, second,
minute, and hour. The function

TIME

returns the value of the real time clock in ticks. The function

TIME(a)

returns the value of the activation clock for activation a in ticks.

An activation can be delayed for t ticks of real time by elaborating

DELAY(t);

An activation can be delayed until the value of the real time clock is t by elaborating

DELAYUNTIL( t);

An activation can be delayed until the value of the activation clock for activation a has the value t by
elaborating

DELAYUNTIL(t,a);

An activation can be delayed until some activation variable a becomes inactive by elaborating

DELAYUNTILINACTIVE(a);

NOTES
The TIME, DELAY, DELAY-UNTIL, and DELAYUNTILINACTIVE procedur. are described in Appendix C. The confilurstion

constants MILLISECONDS, SECONDS, MINUTES, and HOURS are described in Section IZI.
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EXAMPLES

1) Delayminsec waits for I minutes plus j seconds of real time.

PROC dolayminsec (l,j : INT);
DELAY (i*MINUTES.J*SECONDS);

END PROC delayrninsec;

2) Measuring the total time in seconds spent In running a procedure p.
CAPSULE c EXPORTS p,ptime;

VAR total-time : INT(O..1000000) :a 0;
PROC p IMPORTS total-time;

VAR enter : INT(0..1000000) := TIME(ME);,

to0tal-time := total-time + (TIME(ME) - enter) DIV
SECONDS;

END PROC p;

ABNORMAL FUNC ptime => INT(0..1000000)
IMPORTS total-timne;

RETURN total-timie;
END FUNC ptlrne;

END CAPSULE c;

3) Performing an action every I seconds of real time
VAR t :INT(O..1000000) := TIME;
WHILE TRUE REPEAT

action;
t: t+i*SECONDS
DELAY-.UNTIL (t);

END REPEAT;

4) Reusing an activation variable.
BEGIN

TASK t;

END*TA SK t;

VAR a8 ACT;

WHILE NOT done REPEAT

CREATE t NAMED a;

DELAYJJNTIL.INACTIVE (a);
END REPEAT;*

END;
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10.5 WAITING

waitin

iInvocation

bod asoiaedwih ha witnginvocation.

The~~~~~ followingn waticintatualrbit-n

idetiieDtme armeer
REProperties

TheLatt)tmnlk aesaeet otisasqec fwe lue.Awi ttmn

DELAYNTIJNATIV( a



138 Section 10.5 RED LRM 8 March 1979

The first two are used to send and receive messages from some mailbox (see Section 10.3). The last
four are used to cause delays (see Section 10.4 A I waiting invocations can be defined using
the low-level facilities discussed in Sectio 14.3. Note that arbitrary procedure and function
invocations cannot be used as waiting invoca ns.

RULES

Elaboration of a wait statement consists of examini he waiting invocations following WHEN. If at
least one can complete immediately, one of those that can complete is allowed to complete and the
associated body is elaborated. If more than one could complete, only one will be allowed to complete;
the one that actually completes is not defined. If no waiting invocations can complete immediately,
the task activation which elaborated the wait statement waits until one can complete.

For SEND's and RECEIVE's used as waiting invocations, if none can complete immediately, the
activation that elaborates the wait statement is placed on the FIFO waiting queue of each of the
specified mailboxes. When one SEND or RECEIVE complotes, the activation will be removed from the
FIFO queues of the other mailboxes.

If a waiting invocation is SEND (mv), the mailbox m must have a size which Is greater than zero;
otherwise, XEMPTYMAILBOX is raised.

NOTES

Low level details of the semantics of the wif statement are d crbed in Chapter 14.

_XAMPLE$

% wait on two mailboxes
TASK consume2 IMPORTS m, ml, outfile;

VAR data : s;
WHILE TRUE REPEAT

WAIT
WHEN RECEIVE(m,data),

RECEIVE(ml,data) 0>
WRITE(outfile, data);

END WAIT;
END REPEAT;

END TASK cbnsume2;
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10.6 SHARED VARIABLES

A variable is said to be shared if two or more activations can use It. Some cases of sharing are
considered to be danperous sharing,. Dangerous sharing occurs if two activations simultaneously
modify the same shared variable or if one activation modifies a shared variable while some other
activation is accessing that shared variable. The translator will Issue warning messages for those
cases where dangerous sharing might occur.

When dangerous sharing of some shared variable is possible, the user must ensure that the
activations that can use that shared variable elaborate these uses in an orderly way. If simultaneous
use does occur, the effect (including the state of the variable and any value accessed) is not defined.
For a shared variable where the user has ensured orderly access, there Is a pragmat available to
suppress the warning messages for dangerous sharing of that shared uoai*ble (see Appendix B).

NOTES

Let a! and o2 be activations that shore some variable v in a dangerous way. Orderly access can be ensured by either of the
following mains:

a) Using the region statement to surround any references to v in at end s2 go that only one of the references tn happen of
one time (ea next section).

b) Synchronizint al and a2 by using messages so that references to v will not hoppen simultaneously (see example below).

EXAMPLES

1) Mutual exclusion with mailboxes.

VAR common : INT(U .. 10);
VAR m : MAILBOXE INT(O .. 0) 3(0);

TASK t1 IMPORTS m, common;
VAR local : INT(O .. 10);
VAR right : INT(0..0);

RECEIVE( m, right );
common := local;

SEND( m, right );

END TASK tI;

TASK t2 IMPORTS m, READONLY common;
VAR local : INT(d .. 10);
VAR right : INTU..O);

RECEIVE( m, right );
local := common;

SEND( m, right );

END TASK t2;

VAR al, a2 : ACT;
CREATE tI NAMED al;
CREATE t2 NAMED a2;
SEND( m, 0 );
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10.7 REGION STATEMENT AND DATA LOCK VARIABLES

statement

Use of the region statement is one way of ensuring the orderly access to a shared variable by
several activations. The region statement is normally used in conjunction with a data lock variable.
For example,

VAR d : DATA-LOCK;

A data lock variable has two possible states: locked and unlocked. Each data lock variable is
automatically initialized to have the unlocked state.

Basically, the region statement is elaborated by elaborating its body. However, the region
statement ensures that if several activations contain region statements, each specifying the same data
lock variable, at most one of these activations will be elaborating the body of Its region statement. If
two or more activations attempt to elaborate region statements specifying the same data lock variable
simultaneously, then all except one will wait (until that one completes elaboration of its region
statement). If several activations are waiting for region access based on the same data lock variable,
then access will be granted on a first-come first-served basis.

The region statement can also be defined to work for variables with types other than DATA-LOCK
(see Section 14.4.1).

I- _
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RULES

Elaboration of a region statement consists of the following steps:

a) lock the uariable, wait if necessary until this can be done;

b) elaborate the body; and

c) unlock the variable.

Once the variable has been locked, it is guaranteed to be unlocked whenever the elaboration of
the body completes. The unlocking will happen whether the body terminates normally, raises an
exception, or does an exit, goto, or return.

NOTES

Tho DATA-LOCK type is described in Appendix C. Detailed semantics of the reg/on ststement and ways for using It with
uv'orb/&s other Than data lock variables ore diecussed in Chapter 14.

EXAMPLES

1) Simple mutual exclusion.

VAR common : INT(0 .. 10);
VAR d : DATA-LOCK;

TASK t IMPORTS d, common;
VAR local : INT(0 .. 10);

REGION d DO
common := local;

END REGION;

END TASK t;

TASK t2 IMPORTS d, READONLY common;
VAR local : INT(O .. 10);

REGION d DO
local := common;

END REGION;

END TASK t2;

VAR al, a2 : ACT;

CREATE t NAMED al;
CREATE t2 NAMED a2;
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11. OVERLOADING AND GENERICS
QyerloadinR is the association of a single name with multiple deferred units of the same kind. A

name could be associated with several different procedures, for example, but not with a procedure
and a function. All deferred units associated with a single overloaded name will normally perform
logically related computations. For example, the overloaded name ABS is associated both with a
built-in function for finding the absolute value of an integer and with another built-in function for
finding the absolute value of a floating point number.

Interfaces are used to match each use of an overloaded name, during translation, to a particular
deferred unit associated with that name.

In the simplest case, interfaces depend only upon a signature which includes the number, order,
and types of a list of parameters. The use of an overloaded name in an invocation will be resolved to
the deferred unit which has a matching signature; that is, the number, order, and types for the actuaL
parameters are identical to the number, order and types for the formal parameters. For example,

BEGIN
FUNC iszero (a : INT) :> BOOL; % iszero I

RETURN a=0;
END FUNC iszero;

FUNC iszero (a : FLOAT) 0> BOOL; % lszero 2
CONST delta := l.OE-5;
RETURN a < delta AND a > -delta;

END FUNC iszero;

VAR i : INT(-10..10);

VAR f : FLOAT(10,-10.0 .. 10.0);

... iszero (M)... % invokes iszero 1

*. .szero (f)... % invokes iszero 2

END;

In addition to the signature, interfaces can depend upon a translation time property list specified
by a list enclosed in square brackets (i.e., [...]). The use of an overloaded name in an invocation
will be resolved to a deferred unit which has a matching translation time property list. For example,

BEGIN
FUNC zero lINT] 0> INT(M..0); % zero 1

RETURN 0;
END FUNC zero;

FUNC zero LFLOAT] =0 FLOAT(1,0.0 .. 0.0); % zero 2
RETURN 0.0;

END FUNC zero;

...zero INT]... % Invokes zero 1

:::zero [FLOAT]... % invokes zero 2

END;
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The information which is considered to be part of the interface depends upon the kind of deferred

unit. For types, the translation time property list is the entire Interface (signatures are not part of

the interface for types). For other deferred units, the interface consists of both the translation time

property list (if specified) and the signature.

There are two kinds of overloading: explicit overloading and generic overloading. Explicit

overloading occurs when several distinct definitions of a name are written. Explicit overloading can be

used for any kind of deferred unit except types. Generic overloading occurs when a single deferred

declaration is replicated as a result of its appearance within 9 generic declaration. Generic

overloading can be used for any kind of deferred unit.

NOTES

Names associated with variables, constants, exceptions, goto labels, or matching identifiers can not

be overloaded.

11.1 INTERFACES

Interfaces are used to resolve each use of an overloaded name to one of the deferred units

associated with that name. Interfaces include signatures (for all deferred units except types) and

translation time property lists (if specified).

RULES

Each definition of a deferred unit has a formal interface. Each Invocation of a deferred unit has an

actual Interface.

Each use of the (possibly overloaded) name of a deferred unit Is resolved to the deferred unit

associated with the name whose formal interface matches the actual Interface of the use. If there Is

no such deferred unit, the use Is in error.

A'efirtions of a name conflict unless

a) They are both deferred units of the same kind, and
b) Their Interfaces do not match.

The interface of a procedure, function, task, abbreviation, or capsule consists of a signature and, If

specified, the translation time property list. The interface of a capsule or type consists of a

translation' time property list if any is specified.

Two interfaces match if:

a) Both have matching signatures or neither includes a signature, and

b) Both have matching trapslation time property lists or neitner includes a translation time
property list.
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NOTE$

Matching of interfaces is done during translation.

The scope rules (see Section 3.5) permit a local definition to override a conflicting definition in an
enclosing scope; that is, one deferred declaration will override another deferred declaration in an
enclosing scope if they have matching interfaces. A local declaration of one kind will override all
declarations of another kind when all share the same name.

EXAMPLES

1) No signature and no translation time property list

PROC p; ... END-PROC p; % definition 1

Pt % invocation 1

2) Signature and no translation time property list

PROC p (x : INT); ... END PROC p; % definition 2

p (3); % invocation 2

3) Translation time property list but no signature

PROC p [INT]; ... END PROC p; % definition 3

p 'IZNTI; % invocation 3

4) Both a signature and a translation time property list

PROC p lINT] (x INT); ... END PROC p; % definition 4

p*'iINT] (3); % invocation 4
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11.1.1 SIGNATURES

A signature is part of the interface between any deferred unit except a type and Its Invocations.
Signatures are derived from the formal and actual parameter lists and are not explicitly specified.

RULES

The forma~l~inature of a procedure, function, task, abbreviation, or capsule is an ordered list of
the types or subtypes specified for its formaL parameters. The list Is empty if it has no format
parameters.

The actual sipnature of a procedure, function, task, abbreviation, or capsule invocation Is an
ordered list of the subtypes of its actual parameters. If there are no actual parameters, the list Is
empty.

Two signatures match if their lists are the same length and each of their elements match. Two
types match if they are equal (see Section 4.1.5). Two subtypes match if they belong to the same type.
A type and a subtype match if the subtype belongs to the type.

NOTES

Function result types or subtypes are not considered to be port of a sinature.

EXAMPLES

FUNC sign => BOOL; % sign 1
RETURN FALSE;

END FUNC sign;

FUNC sign (1 : INT) > BOOL; % sign 2
RETURN 0=)0;

END FUNC sign;

FUNC sign (,j : INT) => BOOL; % sign 3
RETURN i+j >= 0;

END FUNC sign;

FUNC sign (x : FLOAT) => 800L; % sign 4
RETURN x>=0.0;

END FUNC sign;

FUNC-sign (x,y : FLOAT) => BOOL; % sign 5
RETURN x+y >= 0.0;

-END FUNC sign;

VAR cl, c2, c3, c4, c5 : BOOL;
VAR k,1 : INT(;-50.50);
VAR q,r : FLOAT(10, -50.0 .. 50.0);

CI := sign; % invokes sign 1
c2 := sign (k); % invokes sign 2
c3 := sign (k,1); % invokes sign 3
c4 := sign (q); % invokes sign 4
c5 := sign (q,r); % invokes sign 5
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11.1.2 TRANSLATION TIME PROPERTY LISTS
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invocations must specify a matching actual translation time property list. Translation time property

lists are always explicitly specified.

RULES

Each expre.tsior must be manifest and must be of a type for which equality (-) is defined. Each

identifier must be the name of a function, procedure, or task. The identifier may be followed by an

actual translation time propert li, en it ap ears .as ei a n actuaI generic y

list. Def-inabe symbols may only appear in an atual_ generic property list.

Two translation time property lists match if they have the same number of properties and if their

corresponding properties match. Two expressions match if their values are equal. Two types match if

they are equal (see Section 4.1.5). Two subtypes match if they belong to the same type. A type and a

subtype match if the subtype belongs to the type. An identifier matches an actual property if they

both refer to the same procedure, function, or task.

EXAMPLES

BEGIN
FUNC zero [INT] => INT(..9); % zero 1

RETURN 0;
END FUNC zero;

FUNC zero [FLOAT, 5] => FLOAT(5,0.0 .. 0.0); % zero 2
RETURN 0.0;

END FUNC zero;

FUNC zero [FLOAT, 10] => FLOAT(1I,0.0 .. 0.9); % zero 3
RETURN 0.0;

END FUNC zero;

...zero [INT]... %lnvokes zero 1

...zero [FLOAT, 5]... %invokes zero 2

:.zero [FLOAT, 10]... %invokes zero 3

END;

I
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11.2 EXPLICIT OVERLOADING
Explicit overloading occurs when there are several distinct definitions of deferred units of the

same kind, each of which has the same name, but a different interface.

RULES

Explicit overloading can be used for any kind of deferred unit except types.

EXAMPLES

BEGIN
CAPSULE stackcap EXPORTS stack, insert, remove;

TYPE stack : ... ;

PROC insert (VAR s : stack, I : INT); % insert 1

END PROC insert;

PROC remove (VAR s : stack, OUT r : INT); % remove 1

END PROC remove;
END CAPSULE stackcap;

CAPSULE queuecap EXPORTS queue, insert, remove;
TYPE queue

PROC insert (VAR s : queue, I : INT); % insert 2

END'PROC insert;

PROC remove (VAR s : queue, OUT r : INT); % remove 2

END PROC remove;
END CAPSULE queuecap;

EXPOSE stackcap;
EXPOSE queuecap;

VAR s : stack;
VAR q : queue;
VAR j : INT(M,.10);

insert (s, 3); % invokes insert 1

insert (q, 4); % Invokes insert I

remove (s, J); % invokes remove 1

remove (q, J); % invokes remove 2

END;
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11.3 GENERIC DECLARATION
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A deferred declaration can be "generalized." by placing it in a generic declaration and by replacing
specific types, subtypes, or procedure or function names by references to generic parameters. For
example, a sort procedure which sorts arrays with integer components can be easily generalized to a
generic sort procedure which will sort arrays with any component type.

RULES

The deferred declaration is called the pattern declaration and defines the overloaded name.

The interface of the pattern declaration must contain a use of each generic parameter. The u".
can be

a) within the formal translation time property list, or

b) within in the formal signature, or

c) in the generic constraint of some other generic parameter that has a use in the Interface. The
use cannot appear as a result type or subtype of a FUNC operation constraint,

( fa ganertc parameter appears more than once in the formal interface, each of the corresponding
in an actual Interf ace must resolve the generic parameter to the same replacement element.

The genertc declaration is replaced during translation by a set of deferred declarations called the
gene rated set.

Each deferred declaration in the generated set is obtained first by copying the pattern declaration
and then substituting a specific replacement element for each generic parameter and for each needs
list definition.

If the overloaded name is never invoked, then the generated set is empty. Otherwise, each
invocation of the overloaded name Is examined. Each invocation of the overloaded name will have an
actual interf ace which will be used to set a replacement element for each generic parameter. Needed
definitions are set to corresponding definitions known in the scope of invocation (see Section 11.4). A
new copy of the pattern declaration, with replacement elements for Its generic parameters and for
each needs list definition, is added to the generated set if no equivalent copy has been added
previously, as a result of examining some other invocation.

If a generic declaration is capable of generating some deferred declaration that conflicts with a
particular definition, then the generic declaration itself is considered to conflict with that definition.
The conflict exists even though the deferred declaration is not actually generated.

NOTES

A generic dedaraf ien is an open scope; the generic py aefers and the n..ds list Items are def ined in this scope.
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I1L.3.1 TYPE GENERIC CONSTRAINTS

type
generic
constraint

A generic parcameter with a type generic constraint has replacement elements which are types.

RULES

Any type (including those not known in the scope of the generic declaration) may be a
replacement elemenmt for a generic parameter whose generic constraint is TYPE.

Any type whose name is Id and is known in the scope of the generic declaraton can be a
rep~acement element for a generic parameter whose generic constraint Is TYPE 1.. , ..

EXAMPLES

GENERIC t : TYPE
PROC p (VAR x : 0) ; ... END PROC p;

GENERIC t :TYPE
CAPSULE c~tJ; ... END CAPSULE c;

GENERIC i: TYPE (INT, ENUN), t : TYPE(INT.FLQAT)
PROC q (x ARRAY i OF t); ... END PROC q;



INTERMETRICS INC. Section 11.3.2 153

11.3.2 SUBTYPE GENERIC CONSTRAINTS

subtype
generic
constrbint

A ganerw. paramteter with a subtype generic constraint has replacement elements which are
subtytes.

RULES

Any subtype (including those whose types are not known in the scope of a generic declaration can
be used as replacement elements for a generic parameter whose generic constraint is SUBTYPE.

Any subtype of type t may be used as a replacement element for a generic parameter whose
generic constraint is SUBTYPE (...,t,...).

Any subtype whose type has the name Id and is known in the scope of the generic declaration
can be used as a replacement element of a generic parameter whose generic constraint is

SUBTYPE(...,d,...).
If a subtype is used in several places within the formal interface, then the actual interface must

specify the same subtype in each of the corresponding places. Otherwise, the XeSUBTYPE exception Is
raised when the invocation is elaborated.

For Antfy a mslchin, only th. type of sutypes i. used. Subtype informtion ib uued to st generc parmeters with 
subtype g eneric cnsrant, as well m to check for consistency of sostypan (X..SUBTVPE checki(. .).
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EXAMPLES

% x and y have the same type, but not necessarily the same subtype
GENERIC t : TYPE

PROC p (VAR x : t, VAR y : t); ... END PROC p;

% x and y have the same subtype, which can be referred to as s
% within the body
GENERIC s : SUBTYPE

PROC p (VAR x : s, VAR y : s); ... END PROC p;

% x and y have the same type but not necessarily the same subtype,
% the subtype of x can be referenced as si while 'the subtype
% of y can be referenced as s2
GENERIC t : TYPE, sl : SUBTYPE(t), s2 : SUBTYPE(t)

PROC p (VAR x : sl, VAR y : s2); ... END PROC p;

GENERIC sl : SUBTYPE (ENUM), s2 : SUBTYPE (ENUM)
FUNC f (a : ARRAY st OF s2, READONLY b : s2) > sl; .. o END FUNC f;

GENERIC s : SUBTYPE (ENUM)
TYPE vstring Es] : PTR (n :INT) STRING [s] (n);
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11.3.3 OPERATION GENERIC CONSTRAINTS

operat on

gene ric
constraint

An operation generic contraine has replacement elements which are either procedures, functions,
or tasks. in each case, the types or subtypes of the formrl prameters are specified and, for functions,
the result type or subtype is also specified.

RULES

The replacement elements for the PROC generic constraint are all procedures having the specified
number of parameters of the specified types.

The replacement elements for the FUNC generic constraint are all functions having the specified

number of parameters of the specified types and the specified result type.
The replacement elements for the TASK generic constraint are all tasks having the specified

number of parameters of the specified typos.

If a parameter subtype is specified, matching depends only upon the type to which it belongs. If
the subtype parameter or result specified in the generic constraint does not match the actual subtype

of the replacement element, the XSUBTYPE exception is raised.

If the replacement element Is itself overloaded or generic, then it Is resolved In the clling scope

and its needed items are bound there.
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EXAMPLES

GENERIC f FUNC(FLOAT) => FLOAT
FUNC integrate If] (low,hlgh : FLOAT)

=> FLOAT(20, -1IE10 ..1.@E10);
CONST delta := I.OE-5;
VAR r : FLOAT(20, -10E10 .. 1.0El0) := 0.0;
VAR index : FLOAT(10, -I.0E10 .. l.OE1) :z low;
WH1ILE index < high REPEAT

r := r + delta * f(index);
index := index + delta;

END REPEAT;
RETURN r;

END FUNC integrate;

GENERIC t : TYPE, less-than : FUNC(t,t)=)BOOL
NEEDS :=(t,t);

PROC sort [lessthan] (VAR a : ARRAY INT OF t);
CONST min INDEXOF(a).MIN;
CONST max INDEXOF(a).MAX;
FOR i : INT(]..max-min) REPEAT

FOR J : REVERSE INT(max-i..max-1) REPEAT
IF lessthan(a(J), a(J+1)) THEN

CONST temp := a(i);
a(1) := a(t+l);

a(i+) :% temp;
END-IF;

END REPEAT;
END REPEAT;

END PROC sort;

ABBREV r : RECORDEp,q,s : INT(0..100)J;
VAR a : ARRAY INT(I..100) OF INT(0..100);
VAR b : ARRAY INT(0..500) OF r;

SORT[<] (a); % sort in ascending order
SORT[>] (a); % sort in descending order

SORTf[p'-(b); % sort.ascending based on field p
SORT[pqJ (b); % sort ascending on primary key p

% and descending on secondary key q

FUNC p (x,y : r) > BOOL;
RETURN x.p < y.p;

END FUNC p;

FUNC pq (x,y : r) => BOOL;
CASE TRUE

WHEN x.p < y.p => RETURN TRUE;
WHEN x.p = y.p => RETURN x.q > y.q;
WHEN x.p > y.p => RETURN FALSE;

END CASE;
END FUNC pq;
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11.3.4 VALUE GENERIC CONSTRAINTS

value
generic
constraint

12

A generic parameter with a value generic constraint has replacement elements which are manifest
values.

RULES

A generic parameter with a value generic constraint must appear as an ftem in a formal translation
time property list within the interface.

The only types and subtypes permitted are BOOL, INT, FLOAT, ENUM, and STRING types and
subtypes.

For the STRING and ENUI constraints, uses of the formal generic parameter with the pattern
declaration are type unresolved, if the replacement elenment is type unresolved. For the INT, FLOAT,
ENUME .. .1, and STRING[It] constraints, uses of the formal generic parameter within the pttern
declaration are subtype unresolved, if the replacement element is subtype unresolved.
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gXAMPLES

CAPSULE fcap EXPORTS float, :,4,*.

GENERIC i : INT(1..30)
TYPE float [l] (a,b : FLOAT) :FLOAT (1, a..b);

GENERIC i: INT(1..30)
FIJNC + (x,y float Eil) float Eil;

CONST r ::x.ALL + y.ALL;
VAR z :~floatE1li (r..r);
z.ALL :r;

RETURN z;
END FUNC +;

END CAPSULE fcap;
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11.4 NEEDS LIST

NEEDS needed item,

needed
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Whenever a generic parameter is a type, it is possible that the pattern declaration Inside the

generic dec/.aration requires some procedures, functions or tasks that operate on variabLes or

constants of that type. Such procedures, functions and tasks must be obtained from the scope in

which the overloaded name is invoked, since nothing is known about the type In the scope where the

generic declaration appears. Such procedures, functions and tasks could be obtained by having
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additional generic parameters, but this would lead to a proliferation of such parameters. Instead, the
needs list provides this mechanism. The definitions that appear in the needs list contain sufficient
,nformation to identify the needed procedure, function, or task uniquely, as well as completely specify
its interface.

RULES

When a generically overloaded name is invoked, and the generic declaration includes a needs list,
each definition in the needs list is resolved to the definition of the same name and matching interface
known in the scope where the invocation appears.

If the needed definition is, itself, generically overloaded, then It Is resolved and Its needs list Is
also resolved in that scope.

The needs list may not appear in any generic declaration whose pattern declaration is a type.

EXAMPLES

BEGIN
GENERIC t : TYPE HEEDS :=(tt)

PROC swap (VAR a,b : t);
CONST c := a;
a b;
b := c;

END PROC swap;

VAR i,J : INT(1..10);
VAR f,g : FLOAT(IO, 1.0 .. 19.0);

swap (iJ);

swap (f,g);

END;
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12. MACHINE DEPENDENT FACILITIES
This chapter discusses the facilities of the language for specifying machine dependent

representations for types, specific locations for vo.riabe s, techniques for using code written In other
languages (including assembly language), and configuration capsules which encapsulate
machine-dependent information. Other machine-dependent facilities Include Interrupts (see Section
14.1.4) and low-level I/O (see Section 14.6).

12.1 CONFIGURATION CAPSULES
A capsule with the name "configuration" is called a configuration capsule. A configuration capsule

contains information that is dependent upon the particular target system on which a program is to be
run. Some of the kinds of data that can be specified in a configuration capsule Include:

a) An identification of the target computer and operating system if any. For example,

CONST machine : "IBM3700;
CONST opsys := UVSIN;

b) Information about memory. For example,

CONST memsize := 2**18*bytes; % 256K bytes
CONST bytes :: 8; % 8 bits per byte
CONST words := 4*bytes; % 4 bytes per word

c) Information about timing (see Section 10.4). For example,

CONST milliseconds := 2; % 2 ticks per millisecond
CONST seconds := l e*,mlliseconds;
CONST minutes := 60*seconds;
CONST hours := 60 minutes;

d) Information about I/0 devices. For example,

CONST console := 15; % device 15 is the console
CONST tapes := 4; % there are 4 tape drives

e) Other machine-dependent data of interest.

RULES

When a translation unit contains a capsule invocation declaration which specifies the capsule name
configuration, the translator may check the values of various definitions exported (even if they are
not made visible) by that capsule, to determine the characteristics of the target system. For example,
a compiler that is targeted for PDP-I I may check that the constant machine is defined to have the
value "PDP! 1". The information may also be used, when several translation units are linked together
to form an executable program, to verify that all translation units have specified consistent
configurations.
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EXAMPLES

1) Definition of configuration capsules;

CAPSULE configuration ["1BM36001 EXPORTS ALL;
CONST machine := "IBM3600;
CONST words := 32; % 32 bits per word

END -CAPSULE configuration;

CAPSULE configuration [#PDP11JI EXPORTS ALL;
CONST machine := OPDPIL";-
CONST words := 16; % 16 bits per word

END CAPSULE configuration;

2) Use of configuration capsules:

CAPSULE trans-unitl EXPORTS ...
EXPOSE NONE FROM EXTERNAL configuration ["PDP11"J;
% this expose is for checking purposes only,
% no machine-dependent data is visible

END CAPSULE trans.unitl;

CAPSULE trans-unit2 EXPORTS ...
EXPOSE words FROM EXTERNAL configuration ["PDP11"];
% this translation unit uses the machine-dependent
% constant, words

END CAPSULE trans-unit2;

CAPSULE main-trans-unit EXPORTS NONE;
EXPOSE NONE FROM EXTERNAL configuration ["PDP110];
EXPOSE ALL FROM EXTERNAL trans-unitl;
EXPOSE ALL FROM EXTERNAL trans.unit2;

END CAPSULE main-trans-unit;
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12.2 SPECIFICATION OF REPRESENTATIONS
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representation&l
3 REP item
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ABSENT identifier

PYR E =UNCHECKED. . ................
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A representation can be specified when a new type Is declared (via the type declaratlon). A
representation specifies the physical layout to be used for data items having subtypes of the new

type. The layout is specified In terms of the memory of the target computer system.

RULES

When a representation is specified, the underlying type must consist only of built-in types. Each
of the representational items are described below. Note that several different representational items

may be specified for a given underlying subtype or one of its components.

Bit Numbering,

The memory of the target computer is considered to be a sequence of. bits. Suppose there are N
bits per word. The high order bit of the first word is bit 0. The low order bit of the first word is bit

N-i. The high order bit of the m'th word is bit msN. The low order bit of the m'th word is bit

m*N+N-1.

sIZE

SIZE can be specified for any underlying subtype or component. The expression must have type

INT and be greater than or equal to zero and specifies the maximum number of bits to be used to
represent the underlying subtype or its components. If no size is specified, a default
implementation-dependent size Is used.

ALIGN

ALIGN can only be specified for the entire underlying subtype (i.e., It can not be specified for

components). The form

ALIGN (exp)

specifies that the representation for the underlying subtype is to start at a bit that is at any position
p such that p =0 MOD exp. The form

ALIGN(expl OF exp2)

specifies that the representation for the underlying subtype is to start at a bit that is at any position
p such that p = expl MOD exp2. The expressions must all have type INT. The value of expression

exp2 must be greater than zero. The value of expi must be in the range 0 . exp2-1.

OFFSET

OFFSET can only be specified for components of records and unions. The value of the expression
is the number of bits from the start of the record or union that the component representation is to
start. The expression must have type INT and be greater than or equal to zero. If an offset is not

* specified for a record component, then that component starts immediately after the previous
component. If an offset is not specified for a union component, then that component starts
immediately after the tag. If no offset is specified for the first component of a record, that component
starts at the start of the record. If no offset is specified for a union tag, the tag starts at the start of
the union.
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RECORD

This representational item can only be used for underlying subtypes or for components which
have RECORD types. A representation can be specified for each component of the record.

UNION

This represen.tational item can only be used foi underlying subtypes or for components which
have UNION types. A representation can be speciid for each component of the union and a
representation can also be specified for the special component named TAG.

ARRAY

This representational item can only be used for underlying subtypes or for components which
have ARRAY types. For each index of the array, either NORMAL or NOBOUNDS must be specified.
NOBOIJNDS indicates that information used for array subscript bounds checking should not be stored.

ENUM

This item specifies that enumeration values are to be represented as the integers 0, 1, . o, max.
Since this representation ;s contiguous, checking for illegal values (e.g., on input) Is greatly simplified.

ABSENT

The identifiers must each be names of attributes (i.e., formal parameters) of the type being
defined. Absent attributes are not represented. Inquiry is not permitted for absent attributes.*

PTR

This item specifies how the storage for dynamic variables is to be recovered. This
representational item can only be specified for indirect types. FREE indicates that storage will be
recovered only when the FREE procedure is explicitly invoked (i.e., there will not be any garbage
collection). If UNCHECKED is specified, no representation will be provided for information used to
check for the XFREE exception when FREE is invoked for these dynamic variables.

Implementation-Dependent Representation

The representational items described here are only a basic set which will be supported by all
implemontations. Each implementation may provide additional implementation-dependent
representationol items.

Restrictions on Representation

A data item is said to have an explicit representation If

a) it Is a component (including the .ALL component) of a data item of a user-defined type that has
a representational specification, or

b) it is a component of a data item that has an explicit representation.

A data item that has :n explicit representation may not be bound to a formal parameter that has a
VAR or READONLY binding class. However, such data iems can be used in expressions, in CONST or
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OUT parameter positions. and as targets of the built-in assignment operators.

When a representation is neoded for a union where the lt is not to appear explicitly, this can% be schiod by uslnt a record
with ovorlapping fild.

EXAMPLES

1) Record layout
TYPE packet : RECORD~a : INT(0..15),

b : .BOOL,
c : ENUJII'a, 'b, 'c],
d : ASCII,
e : FLOAT(5, -100.0 .. 100.0)]

REP SIZE(2*WORDS), ALIGN(WORDS),
RECORD~a : SIZE(4),

b :SIZE(1),
c : SIZE(2,
d : SIZE(8, OFFSET(8,
e : SIZE(1*WORDS), OFFSET(1*WORDS)1;

2) Pointers and array layout
TYPE myarray :PTR(n : INT(0..7))

RECORDLi : INT(O. .7),
a : ARRAY(1..n) OF BOO.

REP PTR (FREE UNCHECKED), SIZE(2*n+4),
RECORDLi : SIZE(3,

a : SIZE(2*a+1),
ARRAY UNCHECKED OF SIZE(1V;

PROC init-miyarray (VAR mn: myarray, ,J: INT(0-.);
% m can be pass VAR, but m.1 cannot
ALLOC mn PTR(J);
MJ. := J;

END PROC lnit-nyarray;
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Record with allocation time determined size and with overlaid fields

% If d is true; fields a and f are present

% If d is false, fields b and c are present

- Fields d and e are always present

TYPE myunion(n: INT)
RECORD [a : ASCII,

b : BOOL,
c : INT(O..7),
d : BOOL,
e : FLOAT(5, -100.0 .. 109-0),
f : STRING[ASCII](

6)]

REP ABSENT(n), SIZE(n*BYTES),
RECORD [a : SIZE(7), OFFSET(W),

b : SIZE(M), OFFSET(W),
c : SIZE(3), OFFSET(),
d : SIZE(M), OFFSET(7),
a: SIZE(4*BYTES), OFFSET(I*BYTES),

f : SIZE(6,BYTES), OFFSET(5*BYTES)];

VAR x : myunion(
5 );

VAR y : myunion(1l);

x.b :FALSE;
x.c 3;
x.d := FALSE; % bc present; a,f absent

x.e : 8.8;

y.a := 'A;
y.d := TRUE; % bc absent; af present

y.e :0 8.0;
y.f := "ABCDEF";
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location
specification

A location specification can appear on any variable decltdration. The specification

LOCATIOW (el)

will cause the variable to be stored at the memory location which is the value of el. The expression
91 must have type INT and a value greater than or equal to zero. The specification

LOCATION (IWTERRIJPT e2)

can only appear for variables which have a MAILBOX type and causes that variable to be associated
with hardware interrupt e2 (see Section 14.1.4).
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EXAMPLE

% 360 program status words

TYPE psw: RECORD(sysmask: ARRAY INT(0..7) OF BOOL,
key : INT(0.15),

a,tn,w,p : BOOL,
icode : INT(0 .. 2**18-1),

ic, cc : INT(0..3),
progmask : ARRAY INT(0.3) OF BOOL,

addr : INT(O .. 2**24-1)J

REP SIZE(1sWORDS), ALIGN(2*WOROS),
RECORD[sysmask : SIZE(B, ARRAY NOBOUNDS OF SIZE(1)

key : SIZE(4,
a,m,w,p :SIZE(1,

icode : SIZE(2*BYTES).
iic,cc : SIZE(2,

progmask : SIZE(4, ARRAY NOBOUNDS OF SIZE(1,

addr : SIZE(3*BYTES)J;
VAR ext..old...psw :psw LOCATION (24*words);
VAR svc-old-psw : psw LOCATION (32*words);
VAR prog..old..psw : psw LOCATION (40*words);

12.4 FOREIGN CODE
Foreign code (i.e., code written in other languages, including assembly language) can be used as

part of a RED program if this feature is supported by the translator. This is achieved by converting
the code via an appropriate utility into a RED translation unit. Information needed about linkageI conventions, types, representation, etc., are supplied as directives to the utility program. Once this
has been done, this new translation unit-can be e'xposed by other translation untts written in RED as
though they also had been written in RED. Note, however, that the translator may have to handle
these translation units in a somewhat different fashion than it would handle RED translation units.
Note also that some translators may support open (i.e., inline) expansions of foreign code.
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13. ADVANCED DEFINITIONS
This chapter discusses ways in which special language forms can be extended to work for data

itemns having user-defined types. These forms Include infix and prefix operators, assignment,
selectors, and the case and repeat statements. Also included Is a discussion of the automatically
invoked initialization find finalization operations.

13.1 DEFINABLE SYMBOLS

definable(111)
symbol

Definable symbols are used to define functions for special expression forms and assignment
procedures.

The oper.. )r symbols >, N=, >tz are not definable symbols.

NOTES

Althouth definable smbols s.c defined as functions and procedures, they can not be Ivok~ed using standard invocation forms.

They are Invol sd only when the correspondint special oyntactic farm is used.
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13.2 DEFINITION OF OPERATORS AND ASSIGNMENT

Users can su..pply definitions for the built-in prefix and infix operator symbols and for assignment.
These definitions allow built-in operators to be extended to apply to data items with user-defined
types.

Prefix Operators

A function with a sing.le formal parameter ahd the name +, -, or NOT defines that prefix operator
for a right operand having the type specified for the formal parameter.

Infix Operators

A function with two form~al parameters and the name M, , /, NOD, DIV, &, +, -, = <, IN, AND, OR,
or XOR defines that infix operator for a left operand having the type specified for the first formal
parameter and a right operand having the type specified for the second formal parameter.

For the =, <, and IN infix operators, the function result must have subtype BOOL For = and <,
both formal parameters must have the same type.

Associativit.

The infix operators +, *, AND, OR, XOR, and & are assumed to be associative. The expression

a op b op c

can be evaluated as either

(a op op C

or as

a op (b op c)

where op is one of these infix operators.

Equality and Orderinp

The equals (=) infix operator is assumed to define an equivalence relation. In particul:'r, is

assumed to be reflexive (i.e., a=a is true), symmetric (i.e., a=b is equivalent to b=a) and transitive (i.e.,
if a=b and b=c, then a=c). The operators = and <, taken together, are assumed to define a partial
order (with a total order as a special case). In particular, < is assumed to be transitive and It Is
assumed that, at most, one of

a=b or
a<b or
b~a

will be true.
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The other ordering infix operators ( >, <=, )=) cannot be explicitly user-defined. If = Is
defined, then /a is also automatically defined. If ( is defined, then > is also automatically defined. If
both = and < are defined, then <= and >= are also automatically defined. In particular,

Puroe Operator Definition

not equal a/=b NOT(a=b)
greater than a>b b<a
less than or equal a<=b acb OR a<b
greater than or equal a>=b a=b OR ba

Assignment

A procedure with two formal parameters and the name := defines assignment. Both formal
parameters must have the same type. The first formal parameter corresponds to the left hand side
(i.e., the target) and the second formal parameter corresponds to the right hand side (I.e., the source).

The assignnm.nt procedure is invoked for

a) the assignment statement

b) initialization

c) CONST and OUT formal parameters

d) constructors

e) message passing via mailboxes

For assignment, the following assumptions are made:

a) Any previous value of the first parameter is lost

b) The only value changed by assignment is the value of the first parameter

c) The value of the first parameter, after assignment, will be equal (i.e., their values can be used
interchangeably) to the value of the second parameter before assignment. In particular, for
types for which both := and = are defined, after elaboration of

a := b;

the expression

will have value true if a and b are non-overlapping. L.. A. (

Overriding Defauli Definitions

For new types, := and = are automatically defined (see Sections 4.4.2 and 4.4.3). These automatic
definitionswill not occur if the user provides explicit definitions of :z or local to the same scope in
which the type declaration is local.
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NOTES

Since CONST and OUT bindirt depend upon :-, the definition of :-~ should not use these bliwn clasess (if it did Infinite
recursion~ would result).

EXAMPLga

1) Integer sets via linked lists and sharing(default) assignment

CAPSULE lntsets EXPORTS intset, :z, z, <, ernptyintset,
and, or, xor, in, insert;

TYPE intset : PTR(i: INT) RECORD~val : INT(i..i),
next : intsetl;

% Intsets are immutable sets of inte~prs.
% Since the list cells are not modified,
% assignment can share these cells.
% Default :=is used

FUNC insert (I: INT, set : intset) => intset;
VAR newset :intset;
IF set =NIL OR set.val > I THEN

ALLOC newset PTR(I) :=
(val : I, next : set];

ELSE IF set.val =i THEN
newset := set;

ELSE
ALLOC newset PTR(set.val) :

(val :set.val,
next :insert(i, set.next)];

END IF;
RETURN newset;

END FUNC insert;

FUNC in (I: int, set :intset) => 8001;
IF set NIL OR set.val > I THEN

RETURN FALSE;
ELSE IF set.val =I THEN

RETURN TRUE;
ELSE

RETURN in (i, set.next);
END IF;

END FUNC in;

%--other funcs are similar--

END CAPSULE intsets;
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2) Integer seis via linked lists and copying (user-defined) assignmnent

CAPSULE mutableintsets EXPORTS lntset, u*s (,
emptylntset, and, or, xor, In, insert;

TYPE intset : intlist;

TYPE intlist : PTR(i : INT) RECORD~val : INT(I..1,
next : intset];

%Intsets are mutable sets of integers.
% Assignment must copy the list of cells.

PROC := (VAR target : intset, READONLY source : intset);
IF source.ALL NIL THEN

target.ALL :~NIL;
ELSE

VAR newcell :intlist;
ALLOC newcell PTR(source.val) := source.ALL;
% Note recursion in assigning the

* % .next component of source.ALL
target.ALL := newcell;

END IF;
END PROC ';

PROC insert (1 : INT, VAR set : intset);
IF set.ALL =NIL OR set.val > I THEN

VAR old intlist :=set.ALL;
ALLOC set.ALL ptr(i);
set.val := I;
set.next.ALL old;

ELSE IF set.val =I THEN
* ELSE

insert (1, set.next);
END IF;

END PROC insert;

END CAPSULE mutable..jntsets;
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13.3 INITIALIZATION AND FINALIZATION
When a new type is defined, it is possible to specify actions to be taken at the beginning and end

of the lifetime of each new data item of that type.

RULES

When a new type is defined, the user may also define the procedures INITIALIZE and FINALIZE
local to the same scope as the type definition. These procedures must each have a single formal
parameter of the new type.

When a data item of the new type is created, INITIALIZE is automatically invoked. This
invocation occurs prior to any explicitly specified initialization, but after the creation (and
initialization) of the underlying variable or constant.

The created data item (which is considered to be variable during this Invocation) Is passed as the
actual parameter.

Just before the end of the lifetime of a data item of the new type, FINALIZE is automatically
invoked. The data item ispassed as the actual parameter.

If the new type is defined within a capsule, then INITIALIZE and FINALIZE need not be
exported (they must be exported only if they are to be explicitly invoked outside the capsule).

INITIALIZE and FINALIZE are not automatically called for VAR and READONLY formal parameters
since these are not new variables or constants, but rather references to existing variables or
constants.

NOTES

Note that INITIALIZE and FINALIZE should not hive CONST or OUT parameters (if they do, an infinite recurhion will occur).

-i
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EXAMPLES

CAPSULE stack-cap EXPORTS stack, push, pop;

ABBREV elem :'... ;
TYPE list = PTR RECORD[val : elem,

next : list];
TYPE stack(size : INT) : RECORD[cnt : INT(O..slze),

first : list];
PROC initialize (VAR s : stack);

s.cnt := 8;
END PROC initialize;

PROC push (VAR s : stack, e : elem);
ASSERT s.cnt < s.size;
s.cnt := s.cnt+l;
ALLOC s.first PTR := [val : e, next : s.ftrst];

END PROC push;

ABNORMAL FUNC pop (VAR s : stack) => elem;
ASSERT s.cnt ) 0;
CONST e s.ftrst.val;
CONST n : s.first.next;
FREE (s.first);
s.first := n;
RETURN e;

END FUNC pop;

PROC finalize (READONLY s : stack);
WHILE s.first /= NIL REPEAT

CONST t s.first;
s.first s.first.next;
FREE (t);

END REPEAT;
END PROC finalize;

END CAPSULE stack-cap;
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13.4 DEFINITION OF SELECTOR OPERATIONS
Users can define selector operations (subscripting and dot selection) for new types.

RULES

Dot Selection

The dot selection form

primary.id -"/-- r4V /

will invoke the function with name .id (which m/$ have o$ a/nle formal parameter) and will pass
primary as the only actual parameter. II I

Subscripting

The subscripting form

primary(exp)

will invoke Ihe function with name (*) and will pass primary as the first actual parameter and exp
as the second actual parameter. The subscripting form

prtmary(expl .. exp2)

will invoke the function with name Cs..s) and will pass primary as the first actual parameter and
expl and exp2 as the second and third actual parameters.

For multiple subscripts, the name of the function invoked will correspond to the invocation form.
For example

primary(expl, exp2 .. exp3, exp4 .. exp5)

will involve the function with name (5, s..s, s.. ). The number of formal parameters of a

subscripting function must be equal-to one (for the primary) plus the number of stars in its name.
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EXAMPLE$

1) Dot selection

CAPSULE cmplxcap EXPORTS complex, .re, -im, .mag, .ang, ...;

TYPE complex : RECORD[re, im : FLOAT(5, -100.6 .. 100.0)3;

FUNC .mag (c : complex) > FLOAT(5, -109.0 .. 100.0);
% definition I
RETURN SQRT (c.re**2 + c.im**2);

END FUNC .mag;

FUNC .ang (c : complex) ) FLOAT(5, -100. .. 100.0);
% definition 2
RETURN ATAN2 (c.im, c.re);

END FUNC .ang;

END CAPSULE cmplx-cap;

EXPOSE ALL FROM cmplx-cap;
VAR c : complex;

c.RE ... % uses automatic definition
... c.IR ... % uses automatic definition
... CtIAG ... % uses definition 1
... c.ANG ... % uses definition 2

2) Subscripting

CAPSULE vec-mat EXPORTS scalar, vector,matrix, (0),(,),(.),*.,,.,

READONLY entire;

TYPE scalar: FLOAT(10, -1000.0 .. 1000.0);
TYPE vector (i : INT) : ARRAY INT(1..1) OF scalar;
TYPE matrix (ij : INT) : ARRAY INT(1..i), INT(I..J)

OF scalar;
TYPE entirety : INT(O..0);
VAR entire : entirety;

FUNC (*..*) (READONLY v1 : vector, a : INT, b : INT)
=> vector(b-a+);

% definition I
% this overrides the default definition
% of vector slicing
VAR v2 : vector~b-a+l);
FOR i : INT(a,.b) REPEAT

CONST J := i-a+1
v2(J) := vI);

END REPEAT;
RETURN v2;

END FUNC(o..*);
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FUNC (*) (READONLY m : matrix, a : entirety, b : INT)
=> vector (INDEXOF(m.ALL));

% definition 2
VAR v 1 vector (INDEXOF(m.ALL));
FOR I : INDEXOF(m.ALL) REPEAT

v(i) := m(i, b);

END-REPEAT;
RETURN v;

END FUNC (*);

FUNC (*,*) (READONLY m % matrix, a : INT,
b : entirety) > vector (INDEXOF,(m.ALL, 2));

% definition 3
VAR v : vector (INDEXOF(m.ALL, 2));
FOR i : INDEXOF(m.ALL, 2) REPEAT

v(i) := m(a, );
END REPEAT;
RETURN v;

END FUNC (=,*);

FUNC (,..*, *..,) (READONLY ml : matrix,
a,b : INT, cd : INT)

=> matrix (b-a+l, d-c+1);
% definition 4
VAR m2 matrix (b-a+l, d-c+l);
FOR i INT(a..b) REPEAT

CONST J := i-a+1;
FOR k : INT(c..d) REPEAT

CONST n := k-c+l;
m2 (J,n) ml (i,k);

END REPEAT;
END REPEAT;
RETURN m2;

END FUNC (,..,, ,..

END CAPSULE vec-mat;

EXPOSE ALL FROM vec-mat;

VAR r = vector(l0)i
VAR m = matrix(10, 10);
VAR i,J,l,k : INT(1..10);

... v(i) ... % scalar - default definition for vector

... v(i..J) ... % vector - definition 1

... m(i,J) ... % scalar - default def for matrix

... m(entire,i) ... % vector - definition 2

... m(i,entire) ... % vector - definition 3
m(i..J, k..n) ... % matrix - definition 4
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13.5 DEFINITION OF RESOLUTION

Users can define the resolution form of expressions as a way of getting "literals" and
"constructors" for new types.

RULES

The resolution form

exp # t

where t is a type or a subtype is treated as the invocation of the function with name # and with
translation time property list [t]. The expression exp Is passed as the only actual parameter.

EXAMPLS

CAPSULE modint-cap EXPORTS modint, 0,

TYPE modint (modulo : INT) : INT(9..modulo-1);

GENERIC s : SUBTYPE(modint)
FUNC f [s] (1 : INT) => s;

RETURN i MOD s.modulo;
END FUNC 0;

END CAPSULE modint.cap;

CAPSULE cmpx.cap EXPORTS complex, I, ...

TYPE complex = RECORDOre, im : FLOAT(5, -198.9 .. 100.01);

FUNC # [complex] (i : RECORD[reim : FLOAT]) 0> complex;
VAR J complex;

J.re i.re;
J.im i.lm;
RETURH J ;

END FUNC 0;

FUNC # [complex] (1 : RECORD~mag, ang : FLOAT]) ) complex;
VAR J = complex;
J.re "= 1mag * SIN(i.ANG);
-Jim := 1.mag * COS(ANG);
RETURN J;

END FUNC #;

END CAPSULE cmpx.cap;
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13.6 EXTENDING THE CASE STATEMENT TO USER-DEFINED TYPES

RULES

A case statement of the form

CASE el
WHEN e2, e3..e4 =0 bodyl
WHEN'e5 0> body 2

END CASE;

is expanded to
BEGIN

CONST c := el;
CASE TRUE

WHEN c=el, e3<=c AND c<=e4 => bodyl
WHEN c=e5 0> body2

END CASE;
END;

NOTES

A case staterisfn with only single value libels can be u.ed for b, .,,- ,or which equelity (a) Is defined A case statement
with range valu labels can be uud for mny type for which equality (o) end ordering () are defined.
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13.7 EXTENDING THE REPEAT STATEMENT TO USER-DEFINED TYPES

RULES

A repeat statement of the form

FOR i : s REPEAT
body

END REPEAT;

is expanded to

rep BEGIN
VAR I : s :: s.MIN;
IF i <= s.MAX THEN

WHILE TRUE REPEAT
body %i is treated as read-only within

% the body
IF i = s.MAX THEN

EXIT rep;
END IF;
I := SUCC(l);

END REPEAT;
END IF;

END rep;

A repeat statement of the form

FOR I : REVERSE s REPEAT
body

END REPEAT;

Is expanded to

rep BEGIN
VAR i : s := s.HAX
IF i >= s.MIN THEN

WHILE TRUE REPEAT
body % I Is treated as read-only

% within the body
IF I = s.flIN THENI

EXIT rep;
END IF;
i := PREP(4);

END REPEAT;
END IF;

END rep;

A"y vev deflnd oubtpyP for which MI MAX, , and SUC (or PRE1 for the reverie form) cmn be used I, th. for phase

of e repeat statemeni.
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14. LOW LEVEL FACILITIES
This chapter discusses low-level facilities for multitasking and for 1/0. It is anticipated that most

programmers will use the high-level multitasking facilities (described In chapter 10) and the high-level

1/0 facilities (described in Appendix A). The low-level facilities are provided for system programmers

as tools for building new high-level facilities.

14.1 MORE ABOUT MAILBOXES

Some of the low-level operations on mailboxes that were not described in Section 10.3 are

described below. The use of SEND and RECEIVE as waiting Invocations Is described in Section 14.3.

1.
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14.1.1 AVAILABLE COUNTS

If m Is a mailbox, then the result of

EMPTYSLOTS (W)

is the number of messages that can be sent to m without waiting, This value is the number of empty
buffers in m plus the number of unsatisfied receive requestr on m. Note that the result of Invoking
EMPTY-SLOTS can change if messages are sent to m or if any of the receive requests are revoked.

If m is a mailbox, then the result of

FULL-SLOTS m)

is the numbcr of messages that can be received from m without waiting. ThIs value Is the number of
full buffers in m plus the number of unsatisfied send requests on m. Note that the result can change If
messages are received from m or if any of the send requests are revoked.

EXAMPLES

CAPSULE event-cap EXPORTS pevent,await,signal;
% This capsule defines pulsed events. When a pulsed
% event is signaled, all awaiting activations continue.

TYPE pevent : RECORD[ lock : DATA-LOCK,
queue : MAILBOX [INT(0..0)] (0) ];

PROC signal (VAR e : pevent);
REGION e.lock DO

WIIILE EMPTY-SLOTS (e.queue) > 0 REPEAT
SEND (e.queue,0);

END REPEAT;
END REGION;

END PROC signal;

PROC await (VAR e : pevent);
VAR t : INT(O..0);
REGION e.lock DO % this ensures that awaits arriving
END REGION; % after a signal will not continue
RECEIVE (e.queue,t);

END PROC await;

END CAPSULE event-cap;
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14.1.2 CONDITIONAL MESSAGE PASSING

If m is a mailbox, v is a message, and b is a boolean variable, then elaboration of

CONDSEND (m,vb);

is similar to elaboration of

SEND (m,v)

except that when a wait would have been required, no send occurs and b Is set to false. If the send

can complete without waiting, then b is set to true. There is also a conditional receive procedure of

the form

CONDRECEIVE (m,v,b);

with similar rules.

EXAMPLES

% Producer-consumer with busy waits.

VAR m : MAILBOX [s] (5);

TASK produce IMPORTS m;
VAR d : s;

BEGIN % send with busy wait
VAR b : BOOL := FALSE;
WHILE NOT b REPEAT

CONDSEND (m,d,b);
END REPEAT;

END;

END TASK produce;

TASK consume IMPORTS m;
VAR d : s;

BEGIN % receive with busy wat
VAR b : BOOL := FALSE;
WHILE NOT b REPEAT

CONDRECEIVE (m,d,b);
END REPEAT;

END;

END'iASK consume;

VAR pr,cs : ACT;

SET-PRIORITY (pr,10);
SET-PRIORITY (cs,20);
CREATE consumer NAMED cs;
CREATE producer NAMED pr;



188 Section 14.1.3 RED LRM 8 March 1979

14.1.3 ASSIGNMENT AND EQUALITY OF MAILBOXES

Mailboxes are implemented as indirect types. Assignment for mailboxes is a pointer assignment.

Fo- the assignment

ml := m2;

where ml and m2 are both mailboxes, the message subtypes of both must be the same; however ml
and m2 need not have the same length. Equality returns true if both mailboxes have equal pointers.

EXAMPLE.

% message passing with replys.

ABBREV sm :... ; % message subtype
ABBREV sr :... ; % reply subtype
ABBREV packet : RECORD[ data : sm,

reply : MAILBOX [sr] (0) 3;

VAR m : MAILBOX [packet] (10);

TASK sender (id : INT) IMPORTS m;
VAR vm : sm; % message variable
VAR vr : sr; % reply variable
VAR r : MAILBOX [sr] (1);

WHILE TRUE REPEAT
... % -ampute vm
SEND (m, [data:vm, reply:r]); % send message
RECEIVE (r,vr); % get reply
- % use vr

END REPEAT;

END TASK sender;

TASK receiver IMPORTS m;
VAR p : packet;
VAR vr sr; % reply variable
WHILE TRUE REPEAT

RECEIVE (m,p); % get message
... % process the message(p.data) and compute the reply(vr)
SEND (p.reply,vr); % send the reply

END REPEAT;

END task receiver;

VAR sa : ARRAY INT(I..10) OF ACT;
VAR ra : ACT;

CREATE receiver NAMED ra;
FOR i : INT(1..10) REPEAT

CREATE sender(i) NAMED sa(i);
END REPEAT;
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14.1.4 INTERRUPTS

Hardware interrupts are accessed via mailboxes with an INTERRUPT location. The subtype of the
message associated with a given interrupt are device and implementction dependent. When an
Interrupt occurs, associated data is collected and sent as a message. The interrupt Is then cleared.

EXAMPLES

Suppose a keyboard causes interrupt 16 every time a character Is typed. The Interrupt Is
handled as follows.

VAR m : MAILBOX [ASCII] (5) LOCATION (INTERRUPT 16);

TASK keyboard- hardler IMPORTS m;

VAR char : ASCII;

E*CEIVE (m,char); % Get next interrupt

END TASK keyboard-handler;

14.2 MORE ABOUT THE ACT SCHEDULER
14.2.1 ACT VARIABLE STATES

Each ACT variable has a state that consists of three parts:

active - a boolean. Active is true if the ACT variable is associated with an activation that has been
been created but is not yet completed, and false otherwise.

waiting - a boolean. Waiting is true if the activation associated with the ACT variable is currently
waiting.

suspended - a boolean. An activation whose ACT variable has suspended set to true Is not eligible to
be run.

When an ACT variable is created, active, waiting, and suspended are automatically set to false.

If a is an act variable, then the following functions produce the current value of each of the three
parts of the state.

ACTIVE(a)
WAITM!G( a)
SUSPENDED( a)

When an activation is associated with the act variable, the value of ACTIVE is true.

The suspended boolean is explicitly set by the user using the following procedures.

SUSPEND (a); % sets suspended for a to true
UNSUSPEND (a); % sets suspended for a to false
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14.2.2 CRITICAL AxEAS

When an activation is executing certain particularly critical areas of code It Is desirable to

a) prevent the activation from being preempted by some othfir activation (even If that other
activation has a higher priority), and

b) temporarily ignore any EXTERMINATE invocations for the activation.

This can be achieved by elaborating

CRITICAL;

at the beginning of the critical area and elaborating

NONCRITICAL;

at its end. When an activation is created it is nonctitical. Invocation of CRITICAL makes it critical.
Invocation of NONCRITICAL make it again noncritical. 1Vhen a running activationi Is critical it Is never
preempted. When EXTERMINATE is invoked for some critical activatlon, no action is taken until the

activation becomes noncritical; at which time X-TERMINATE is raised.

NOTES

An activation should be critical only for very short sections of code.

14.2.3 SCHEDULING ALGORITHM

This section gives the scheduling rules used by the ACT scheduler.

RULES

An activation is eigible to be run if

a) it is active;
b) it is not waiting;
c) it is not suspended.

If a and b are activations which are both eligible, the priority of a is higher than the priority of b,
and b is not critical, then a will be running if b is running.

If a and b are activations which are both eligible, both have the same priority, a became eligible
before b, and b is not critical, then a will be running if b is running.

If an activation is both running and critical, then it will continue to run until it becomes noncritical
or until it waits.

If there are any activations that are eligible, then at least one of these will be running.

If two or more activations are running, no assumptions can be made about their relative speeds.

I
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14.3 WAITING
There are two kinds of operations used for the wait statement: synchronizing operations

associated with waiting invocations and scheduler operations that cause the activation to wait. Such
operations can be defined to provide an alternative definition of the wait statement.

14.3.1 SYNCHRONIZING OPERATIONS FOR WAITING INVOCATIONS

RULE

For each kind of waiting invocation of the form

name(el,e2, ...,en)

the following five operations must be defined.

a) nameST - a subtype. A variable with this subtype is created for every waiting Invocation that
Is examined. For example,

VAR v : nameST;

b) nameREQUEST (vel,e2, . . . ,en) - a procedure. This operation is invoked to request that
the waiting invocation be enqueued on the appropriate wait queue. This operation Is Invoked
at most once for each waiting invocation in a wait statement.

c) nameTEST(v,el,e2, . . . ,en) - a boolean function. The result of this function is true if the
waiting invocation can be successfully completed. The name-REQUEST procedure will have
been invoked prior to invoking name-TEST.

d) nameCOtPLETE(v,el,e2, .. . ,en) - a procedure. Invocation of this operation completes the
waiting invocation. It will be invoked only after name-TEST has produced true.

e) nameREVOKE(v,el,e2, . . . en) - a procedure. This operation Is invoked for every waiting
invocation for which name-REQUEST has been invoked. No other operations for a particular
waiting invocation will be invoked after name-REVOKE.
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EXAMPLES

This example shows how the MAILBOX type could have been defined If It were not built-in. Note
that this definition has been simplified from the built-in MAILBOX type In three ways.

a) It does not do all error checking.
b) It is not particularly efficient.
c) Not all operations are specified.
d) It does not handle zero-length mailboxes.

This example assumes that a QUEUE[s] data type has been previously defined. Queues are
initially empty and have the following operations: INSERT, REMOVE, FIRST (gets first element without
removing it), SIZE, and DEQUEUE (removes a specified value from the queue).

CAPSULE mailboxes
EXPORTS mailbox, send, receive, full-slots, empty-slots, cond-send,

cond-receive, sendST, send-REQUEST, send-TEST,
send-COMPLETE,
send-REVOKE, receiveST, receive-REQUEST, receive-TEST,
receive-COMPLETE, receive-REVOKE

TYPE sendST : INT(O..0); % Note that these are dummys
TYPE receiveST : INT(0..0); % In a more efficient

% implementation, these
% would actually be
% elements linked into
% the mailbox squeue
% and rqueue.

GENERIC s : SUBTYPE
TYPE MAILBOX [s] (len:INT)

RECORD[ lock : DATA-LOCK,
msg : QUEUE [s],
squeue : QUEUE [sendSTJ,
rqueue : QUEUE [receiveST] ];

% Invariants:
% (1) If SIZE(m.msg)>0 and SIZE(m.rqueue)>0 then
% 1F1ST(m.rqueue) has been sent a SYNC-SIGNAL
% or will call receive-TEST before waiting.
% (2) If SIZE(m.msg)<m.len and SIZE(m.squeue)>0
% then FIRST(m.squeue) has been sent a SYNC-SIGNAL
% or will call send-TEST before waiting.

GENERIC t : TYPE

ABNORMAL FUNC empty-slots (READONLY m : MAILBOX[t] ) > INT;
RETURN (m.len-SIZE(m.msg)) + SIZE(m.rqueue);

END FUNC empty-slots;
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GENERIC t : TYPE
ABNORMAL FUNC full-slots (READONLY m : MAILBOX[t] 0 IT;

RETURN SIZE(m.msg) + SIZE(m.squeue);
END FUNC full-slots;

GENERIC't : TYPE
PROC send-REQUEST ( READONLY q : sendST,

VAR m : MAILBOX [t],
READONLY v : t

REGION m.lock DO
INSERT (m.squeue,ME); % needn't wake up self

END REGION;
END PROC send-REQUEST:

GENERIC t : TYPE
ABNORMAL FUNC sendTEST ( READONLY q : send-ST,

READONLY m : MAILBOX [t],
READONLY v : t

=> BOOL;
RETURN FIRST (m.squeue)=ME AND

SIZE (m.msg) < m.len
END FUNC send-TEST;

GENERIC t : TYPE NEEDS :=(t,t)
PROC send-COMPLETE ( READONLr q ; sendST,

VAR m : MAItBOX t],
READONLYv : t );

REGION m.lock DO
INSERT (m.msg,v); % may Invalidate Invariant I
IF SIZE(m.msg)=! AND SIZE(m.rqueue)>O THEN

SYNC-SIGNAL (FIRST(m.rqueue));
END IF;

END REGION;
END PROC send-COMPLETE;

GENERIC t : TYPE
PROC send-REVOKE ( READONLY q : sendST,

VAR m : MAILBOX [t],
READONLY v : t

R ION m.lock DO
. DEQUEUE (m.sqOeue,i), % may disrupt Invariant 2

- IF SIZ m.squeue))0'AND SIZE(m.msg)<m.len THEN
NCHSIGNAL (FIRST(m.squeue));

END IF;
END REGION;

END PROC send-REVOKE;

GENERIC t-: TYPE
PROC receive-REQUEST ( READONLY q : receiveST,

VAR m : MAILBOX Et],
READONLY v : t

REGION m.lock DO
INSERT (m.rqueue,ME);

END REGION;
END PROC receive-REQUEST;
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GENERIC t : TYPE NEEDS :=(t,t)ABNORMAL FUNC receiveTEST ( READONLY q : receiveST,READONL~y i : MAILBOX tt],
READONLY v : t => BOOL;RETURN FIRST(m.rqueue)=ME AND O(SIZE(.msg);

END FUNC receive-TEST;

GENERIC t : TYPE NEEDS :=(t,t)
PROC receiveCrOPLETE ( READONLY q : receiveST,

VAR m : MAILBOX [t],
VARv : tREGION m. lock DOREMOVE (m.msg,v); % may disrupt invariant 2

IF SIZE(m.msg)=m. len-I AND 0(SIZE(m.squeue) THENSYNC-SIGNAL (FIRST(m.squeue));
END IF;

END REGION;
END PROC receiveCOMPLE'T;

GENERIC t : TYPE NEEDS :=(t,t)PROC receive-REVOKE ( READONLY q : receiveST,
VAR m : MAILBOX [t],
READONLY it : tREGION m.loc DO

DEQUEUE (Am.rquebe,q); % may disrupt-invariant I, IF SIZE(m.rqueue)>O AND, SZE(m.msq)<m. efTHEN---SYNCSIGNAL (FIRST(m.rqueue));
END IF;

END REGION; V..
END PROC receive-REVOKE;

GENERI,. t TYPE NEEDS ::(t,t)
PROC z ( VAR m t MAILBOX [t],

READONLY v : t
, N send (mv) => % this send is not an invocation

END WAIT;
END PROC send; "

GENERIC t't TYPE NEEDS :=(t,t)
PROC(receive ( VAR m.: MAILBOX [t],

VARv:tWA IT
WHEN-receive (m,v) > % this receive is not an invocation

END WAIT;
END PROC receive;
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GENERIC t :TYPE NEEDS := (tt)
PROC cond-.send ( VAR m : MAILBOX Et],

READONLY .v : t,
VAR b : BOOL

VAR q :send..ST;
send-REQUEST (q~mv);
IF send-TEST (q,m.v) THEN

send-COMPLETE (q,m,v);
b :~TRUE;

ELSE
b FALSE;

END IF;
send-..REVOKE (q,ni,v);

END PROC cond..send;

GENERIC t : TYPE NEEDS ::= (t,t)
PROC cond..receive ( VAR m :MAILBOX Et],

VAR v : t,
VAR b :BOOL

VAR q :receive..ST;
receive-.REQUEST (q~rnv);
IF receive-TEST (q,rn.v) THEN

receiveCOMPLETE (q~mv);
b TRUE;

E LSE
b ::FALSE;

END IF;
receive-.REVOKE (q,mi,v);

END PROC crond-.recelve;
END CAPSULE m~ailboxes-,

14.3.2 ACT SCHAEDULER OPERATIONS FOR WAITING

There are three ACT scheduler operations for waiting.

a) SYNC.YESET - a p?ocedure. This procedure is invoked immediately before the name-.TEST
functions are checked. Its effect is to override all previous SYNC-..SIGNALS,

b) SYNC...AITI - a procedure. This procedure is invoked after all name-.TEST functions have
produced false. Waiting occurs if SYNC-.SIGN4AL has not been invoked for this activation since
the last tinie that 3Y1NC..RE3ETwas invoked.

0) SYNC.,SIGNAL(-a) - a procedure (where a is a variable with type ACT>. This procedure Is
invoked to indicate that the result of one of the naMGTF**'r operations of the specified
activations will be different when next invoked. If the h....atlon Is waiting, as a result of
performing SYNC-WAIT, it will be awakened.

Exirg invocations of SYNC-SIGNAL will not cause erroneous behavior since the neuvm*-TEST functions aegain invoked bef are
completion of any welling Invocoflon.
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14.3.3 EXPANSION OF THE WAIT STATEMENT
The wait statement

WAIT
WHEN send(ml,v), send(m2,v) 0 bodylWHEN DELAY (10*SECONDS) 0) body2

END WAIT;

can be expanded to
BEGIN

VAR q1 : SEND ST;
VAR qZ : SENDST;
VAR q3 : DELA!_ST;
VAR i : INT(1..2};

SEND-REQUEST (q.1,mlv);
SENDREQUEST (q ,m2,v);
DELAY-REQUEST (Q3, 10*SECONDS);

loop WHILE TRUE REPEAT
SYNC-RESET;
CASE TRUE

WHEN SEND-TEST (ql,ml,v) >
SEND-COMPLETE (ql,mlv);
i:=];
EXIT loop;

WHEN SEND-TEST (q2,m2,v) =>
SEND-COMPLETE (ql,m2,v);
i:=l;

EXIT loop;WHEN DELAY-TEST (q3,10*SECONDS) u)DELAY-COMPLETE (q3,10.SECONDS);
1::2;

EXIT loop;
ELSE >

SYNC-WAIT;
END CASE;

END REPEAT loop;

SEND-REVOKE (q],ml,v);
SEND-REVOKE (q2,m2,v);
DELAY-REVOKE (3, 10*SECONDS);

CASE i
WHEN 1 => bodyl
WHEN 2 => body2

END CASE;

END;
Note that this is only' one of the possible expansions. Translators are free to choose any expansionthat is consistent with the semantics of the language.



INTERMETRICS INC. Section 14.4 197

14.4 MORE ABOUT MUTUAL EXCLUSION

14.4.1 SEMANTICS OF THE REGION STATEMENT

HILES

A region statement has the form

REGION c .p DO
body

END REGION;

and is roughly equivalent to

LOCK (exp);
GUARD

body
BY ELSE =>

UNLOCK (exp);
RERAISE;

END GUARD;
UNLOCK (exp);

Note that LOCK is invoked at entry to the region and that UNLOCK is invoked at exit from the region
(even when the exit occurs as the result of an unhandled exception). Recall however, thai a region
statement guarantees that the region will be unlocked no matter how it is left. There are two cases
where the rough expansion must be further refined

a) Exits and gotos out of the body of a region must also cause UNLOCK to be invoked.

b) If an EXTERMINATE occurs at certain critical points (such as after the LOCK but before the
GUARD), unlocking will not occur in the rough expansion. This problem is avoided by making
certain parts of the expansion be run as critical, so any exterminates will be deferred. In
particular, invocations of LOCK and UNLOCK will be run as critical, while the elaboration of the
body will not be critical.

NQTES

A v#Iobe with any type for which LOCK end UNLOCK procedures are defined can be used in the region stselemft.
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EXAMPLES

This example shows how monitors can be defined in the language. First an example Is given of

how monitors can be used.

CAPSULE linebuffer EXPORTS send, receive;
VAR lock : MONITOR-LOCK;
VAR contents : line;
VAR full : BOOL;
VAR sender, receiver : MONITOR-QUEUE (lock);

PROC receive (OUT text : line) IMPORTS ALL;
REGION lock DO

IF NOT full THEN
DELAY (receiver);

END IF;
text contents;
full FALSE;
CONTINUE (sender);

END REGION;
END PROC receive;

PROC send (text : line) IMPORTS ALL;
REGION lock DO

IF full THEN
DELAY (sender);

END IF;
contents := text;
full := TRUE;
CONTINUE (receiver);

END REGION;
END PROC send;

END CAPSULE line-buffer;

£
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The two data types needed for monitors, MONITOR-LOCK and MONITORQUEUE, together with their

operations are defined as follows.

CAPSULE monitor-defs EXPORTS monitor-lock, monitor-queue,
lock, unlock,
delay, continue, :n

TYPE monitor-lock : PTR RECORD[external, urgent : DATALOCK];

TYPE monitor-queue (lock : monitor-lock) : DATA-LOCK;

PROC initialize (VAR m : monitor-lock);
ALLOC m PTR;
LOCK (m.urgent); % lock the urgent queue so that the next

% activation to lock will wait

END PROC initialize;

PROC initialize (VAR mq : monitor-queue);
LOCK (mq.ALL); % lock the monitor queue so that the next

% activation to lock will wait

END PROC initialize;

PROC lock (VAR m : monitor-lock);
LOCK (m.external); % lock the main lock

END PROC lock;

PROC unlock (VAR m : monitor-lock);
IF EXCESS-LOCKS (m.urgent) > 1 THEN

UNLOCK (m.urgent); % release next activation from
% the urgent queue

ELSE
UNLOCK (m.external); % unlock the main lock

END IF;
END PROC unlock;

PROC continue (VAR mq : monitorqueue);
IF EXCESS-LOCKS (mq.ALL) > 1 THEN

UNLOCK (mq.ALL); % release the next activation
% waiting on mq

LOCK (mq.lock.urgent); % wait on the urgent queue
END IF;

END PROC continue;

PROC delay (VAR mq : monitor-queue);
unlock (mq.lock); % leave the region
LOCK (mq.ALL); % wait on the mq queue

END PROC delay;

END CAPSULE monitordefs;
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14.4.2 MORE ABOUT DATALOCKS

In addition to lock and unlock, data lock variables also have operations EXCESS-LOCKS and OWNER.
If d Is a data lock variable, then the result of

EXCESS-LOCKS (d)

is the number of times that LOCK(d) has been invoked (but not necessarily completed) minus the
number of times UNLOCK(d) has been called. The values that result can be Interpreted as follows:

a) 0 - The lock Is unlocked.
b) I - The lock is locked and there are no activations waiting.
c) >1 - Ther-- are activations waiting, attempting to lock the data lock.

If d is a data lock variable, then the result of

OWNER (d)

is the activation that locked the data lock or NIL-ACT if the data lock Is unlocked.

14.4.3 LATCH

Latches are the basic low-level synchronization type. Since LOCK and UNLOCK procedures are
available for latches, they can be used in the region statement.

RULES

Latches are either locked or unlocked. Elaboration of

LOCK (t);

(where t is a variable with type LATCH) will lock t if t is unlocked; otherwise, it will walt until t
becomes unlocked. If there are several activations waiting to lock a latch, which one will actually
succeed when the lock becomes unlocked Is undefined. Elaboration of

UNLOCK (t);

will unlock latch t. Elaboration of

COND_L6LCK (t,b) ;

where b is a boolean variable, will lock t if t is unlocked and set b to true; otherwise, t Is not
changed and b is set to false.

NOTES

The only virtue of latch.s in that they have in inexpenmive implemeintation. In many can*, the wa,1ln can be done as busy

wtifin.
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14.5 USER-DEFINED SCHEDULERS

In addition to the built-in priority ACT schedulers, users can define their own schedulers. The
scheduler to be used for an activation is determined, when the activation is created, by the type of
the activation variable specified (after NAMED) in the task invocation statement. User-defined
schedulers are capsules that define the type for their activation variables and a set of basic
scheduling operations. The operations are implemented In terms of invocation of the fundamental
operations of the built-in ACT scheduler. Synchronization schemes (including DATA-LOCK and
MAILBOXes) are designed in such a way that they will work correctly with any scheduler (i.e., they are
independent of the particular scheduler used).

14.5.1 ACT ASSIGNMENT AND EQUALITY

ACT is implemented as an indirect type. Assignment for variables with an ACT type is a pointer
assignment. The assignment

al := a2;

where al and a2 are both ACT variables, sets al to point to the same Information as a2. Equaiity
returns true if both variables point to the same information. There Is also a constant, NIL..ACT, wh:ch
has type ACT and is a nil pointer.

NOTES

ACT asinmn and equality are useful for creating queues of Oct Vauiable.
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14.5.2 LOW AND HIGH OPERATIONS

RULES

When an activation exists that is controlled by a user-defined scheduler, there are really two
schedulers involved: the user-defined scheduler and the underlying ACT scheduler. There are also
two activation variables involved, one for each scheduler. For example,

VAR ua USER-ACT;
CREATE t NAMED ua;

creates an activation of task t, which is controlled by the USER-ACT scheduler. The two activation
variables here are

a) us -- The activation variable for the user-defined USER-ACT scheduler.

b) Another variable of type ACT (which is not explicitly named, but for reference purposes call it
aa). The variable as Is the one by which the ACT scheduler controls scheduling of the
activation.

The result of elaborating

ME

during elaboration of the activation of t will be aa and the result of elaborating

HE [USERACT]

during elaboration of the activation of t will be ua. The XSCHED excep ion Is raised If the activation
variable of the invoking activation does not have type USER-ACT. The function ME is called a
low-level operation (accessing the underlying ACT scheduler information) and the function ME
[USER.ACT) is called a high-level operation (accessing the specified activation variable ua).

Variable ua normally contains sufficient information for the USER-ACT scheduler to find a
(actually the information that as points to). This can be done by including a as a component ot ul
or by making us an index into some scheduling queue that contains aa.

There are also two sets of scheduling operations available: one high-level set for the USER-ACT
scheduler and anoth'r low-level set for the ACT scheduler. The high-level USER.ACT operations are:

SYNCRESET(ua); %.used for waiting
SYNC.WAIT(ua); % used for waiting
SYNCSIGNAL(ua); % used to end waiting
TASKEND(ua); % invoked at the completion of the

% activation

These all invoke procedures defined for the USER-ACT scheduler. The low-level operations are:

LOW._SYNCRESET;
LOWS YNCWA IT;
LOWSYNCSIGNAL( a);
LOWTASKEND( a);

These all invoke procedures defined for the ACT scheduler. The high-level operations will nnrmally
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To allow synchronization schemes to be independent of any particular scheduler, there is a way of
getting from ACT variable aa to the high-level operations upon the USER-ACT variable Us. This Is
achleved by the following ACT scheduler operations:

SYNC_R.ESET; % invokes SYNCRESET(ua);
SYNC-WAIT; % invokes SYNC.WAIT(ua);
SYNCSIGNAL(aa); % invokes SYNCSIGNAL(ua);
TASKEND(aa); % invokes TASKEND(ua);

The way in which these operations are achieved is described In the next subsection. These
operations allow synchronization operations to be ignorant of the particular scheduler that is being
used. For example, during the elaboration of the activation of t, Invocation of

SYNC-WAIT;

will cause the invocation

SYNCWAIT(ua);

to occur. This means that the synchronization operations need not directly invoke

SYNCWAIT(ME[UERACT]);

If this had been necessary, the synchronization operation would have needed knowledge of the type
USER-ACT.

Note that when activations are scheduled by the ACT scheduler (i.e., no user-defined scheduler Is
Involved), then the following operations are equivalent:

SYNCRESET; % is equivalent to LOWSYNCRESET
SYNC_WAIT; % is equivalent to LOW-SYNC_WAIT
SYNCSIGNAL(a); % is equivalent to LOWSYNCSIGNAL(a)
TASKEND(a); % is equivalent to LOWTASKEND(a)
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14.5.3 TASK ACTIVATION CREATION AND COMPLETION

RULES

TASK INVOCATION STATEMENT

The ta/ 'invocation statement has the form

CREATE t(el,e2,...,en) NAMED av;

The effect of elaborating this statement is

a) create a new variable of type ACT (for reference call it aa).

b) create a new activation of t, place information about it (e.g., starting address, stack locations,
save area, etc.) in aa.

c) bind the actual parameters (el,2, ... ,en) to this activation.

d) set up the following procedures

PROC SYNC-RESET;
SYNCRESET(av);

END PROC SYNC-RESET;

PROC SYNC-WAIT;
SYNCWAIT(av);

END PROC SYNC-WAIT;

PROC SYNC-SIGNAL;
SYNCSIGNAL(av);

END PROC SYNC-SIGNAL;

PROC TASK-END;
TASKEND(av);

END PROC TASK-END;

and place the address of each in aa. This allows access to the high-level scheduler, given only
the low-level activation variable aa.

e) elaborate the following procedure invocation:

TASKSTART( av, aa);

For activations scheduled by the ACT scheduler (i.e., when av has type ACT), this invokes the
ACT scheduler operation that starts up the activation. For activations scheduled by a
user-defined scheduler, this invokes the operation required for that scheduler.

TASK COMPLETION

When a task activation has completed the elaboration of the task body, the Invocation

TASKEND(ME);

is elaborated. This allows the scheduler to remove the activation from its queues.
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14.5.4 EXAMPLE - A ROUND ROBIN SCHEDULER

CAPSULE round-robin (time-slice : INT) EXPORTS rr-act,
task-start, task-end, sync.reset,,
sync-wait, sync-signal;

CONST max := 256; % maximum number of activations to
% be scheduled

TYPE rract : INT(1..max);

VAR n : INT(0..max) := 0; % index of last q entry in use
VAR curr : INT(1..max) := 1; % index of activations

% currently scheduled
VAR dlock : DATA-LOCK;
VAR asched ACT; % scheduler activation
VAR q : ARRAY INf(1..max) OF ACT; % activations to be

% be scheduled

PROC task-start (VAR r : rr-act, VAR a : ACT) IMPORTS ALL;
REGION dlock;

ASSERT n < max;
n := n + 1;
q(n) a;
r.ALL n;
SUSPEND (a);
TASK-START (a,a);
SYNC-SIGNAL (asched);

END REGION;
END PROC task-start;

PROC task-end (VAR r : rr-act) IMPORTS ALL;
CONST i := r.ALL;
VAR victim : act;
REGION dlock DO;

victim := q(i);
q(i) := NIL-ACT;

END REGION;
LOWTASKEND (victim);

END PROC task-end;
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PROC sync-wait (VAR r : rrect) IMPORTS asched;
LOWSYNCWAIT;
SYNC-SIGNAL (asched); % signal that a non-waiting

E activation is availableEND PROC syncYatit;

PROC'sync-reset (VAR r : rract);
LOWSYNCRESET;

END PROC sync-reset;

PROC sync-signal (VAR r : rract) IMPORTS q;
LOWSYNCSIGNAL (q(r.ALL));

END PROC sync-signal;

TASK scheduler IMPORTS ALL;
WHILE TRUE REPEAT

REGION dlock DOVAR new : INT(I..max+D) := curt;
% search for next available activation

loop WHILE TRUE REPEAT
new := new + 1;
IF new ) n THEN

new := new - n;
END IF;
IF q(new) /= NIL-ACT AND NOT WAITING (q(new)) THENEXIT loop; % found one
END IF;
IF new = curr THEN % all waiting or dead
SYNC-RESET;
UNLOCK (dlock); % leave regionSYNC_WAIT; X wait for a new task-start

% the end of a sync-waitLOCK (diock); % reenter region
END IF;

END REPEAT loop;
IF new /= curr THEN

% sctedule next activation
IF q(curr) /= NIL-ACT THEN

SUSPEND (q(curr));
END IF;
UNSUSPEND (q(new));
curr := hew;

END IF;
END REGION;
DELAY (time-slice);

END REPEAT;
END TASK scheduler;

q(1) := NILACT;
SET-PRIORITY (asched, 255);
CREATE scheduler NAMED asched;

END CAPSULE round-robin;
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14.6 LOW-LEVEL 1/0

Low-level 1/0 is provided to allow low-level access to the most primitive level of 1/0 provided in
the target computer. The high-level 1/0 described in Appendix A can be defined using low-level 1/O0
together with the Interrupt handling facilities described In Section 14.1.4.

RULES

Invocation of

LOWIO (device, command, data);

will cause the specified command to be issued for the specified device, using the specified data. If
there is no data needed, the Invocation

LOWIO (device, command);

may also be available. The types of each of the parameters is Implementation-dependent. The effect
of LOWIO is implementation-dependent.

EXAMPLE

1) 360 example

TYPE CCWPTR : PTR CCW;
VAR CAW : CCWPTR LOCATION (72);
VAR STATUS : IOSTATUS;

CAW :: ... % compute address of CCW
LOW1O (device, 'SIO); % executes an SIO for the

% specified device

LW_I0 (device, 'TIO, STATUS); % executes a TIO for the
% specified device and
% returns result
% in STATUS
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A. HIGH-LEVEL I/0
This appendix discusses a recommended set of definitions for user-level input-otitput

programming. Thu definitions in this set include file types and the procedures and functions which

operate on files. Files may be defined and associated with external physical files or devices. Physical
files may be created, deleted, and renamed. Tha files may be organized for either sequential or
random access and may be defined as either input, output, or updates files. Files may be read or
written and positioned to any component. *Files may be interrogated to determine current size or
position or to zscertain if the current position is at the end of the file. Additional file processing

facilities are provided for files whose components are characters (i.e., have an ENUM type). ThL
facilities allow strings of multiple characters to be read or written by a single invocition.

A FILE VARIABLES, OPEN, AND CLOSE

A file is a variable having a FILE type. A file is associated with an . --d collection of
components, all having the same type. The type property list specifies the ,.e oi the compornts
and the constraint property list specifies the access method (sequential or random) and the file use

(input, output, cr update). For example,

VAR int-file : FILE [INT(min..max)] ('SEQ, 'INPUT);

defines lnt-f 1le as a sequential file whose components are integers in the range mi n through max.
The file is usable for input processing only. Note that the type of int-f iIa is FILE [INT].

Before any file processing can occur, the file must be associated with a physical file. A physical
file can be a file on a storage medium, a physical device, or a file on a storage medium representing a

physical device (for example, a spooled card reader file). The association is made by the OPEN
procedure, which also serves to specify the initial state of the file (old or new). If the initial state of
the file was new, a file is created and its name placed in the file directory. If processing is attempted
before a file is opened, an exception is raised. Assignment is not defined for file variables.

After all file processing has been completed, a file may be closed by the CLOSE procedure, which
severs the association with the physical file and specifies subsequent file disposition (save or delete).

Although old, new, save, and delete do not apply to all physical devices, they are required for files
associated with such devices. If the initial state or final disposition do not make sense, they are
ignored. Requiring this information makes the program more pr' 4 able, since physical devices are
cbmmonly represented by files on a storage medium. A file i sociated with a card reader, for
example, can later be associated with a spooled card reader. Typ cal examples of file use are shown
below:

1) File associated with file on storage medium

VAR intfile : FILE [INT(min..max)] ('SEQ, 'INPUT);

OPEN (int-file, "ABC*, 'OLD);
... % file processing
CLOSE (int-file, 'SAVE);

2) File associated with physical device

VAR printer : FILE [ASCII] (ISEQ, 'OUTPUT);
OPEN (printer, "0 ER, 'OLD);

% text printing
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CLOSE (printer, 'SAVE);

Seluential and Random Files

A sequential file is a file which is processed by accessing each component in succession. A
random file is a file which permits direct acces to any component regardless of its position with
respect to other components. Not all processing procedures and functions are valid on sequential files
(i.e., a card reader cannot be backed up to the start of the file after some reading has occurred).

Text and Standard Files

Any file whose components have an enumeration type (i.e., ASCII or some other character type) is
called a text file. All other files are called standard files. There are two predefined text files, SYS-IN
and SYS-OUT, which are files of ASCII. A set of procedures and functions is available for reading and
writing text files in a line-oriented manner. Formatting is achieved by combining text files with
string-conversion functions.

VAR text-file : FILE [ASCII] ('SEQ, 'INPUT);
OPEN (text-file, "SYSTEM", 'OLD);
... % text file processing
CLOSE (text-file, 'DELETE);

File Use

An input file is a file which is read-only. An output file is a file which Is write-only. An update
file Is a file which may be read or written.



INTERMETRICS INC. Appendix A.2 211

A.2 FILE PROCESSING

File processing is accomplished by the READ, WRITE, SETPOSITION, and FILERENAME

procedures and the SIZE, POSITION, and EOF functions.

READ and WRITE

READ moves data from an input or update file to a o.riable defined to be of the component

subtype. After the READ, the file position is increased by one. WRITE moves data from a voriable of

the component subtype to an output or update file. After the WRITE, the file position is hrcreased by

one. If the data was written at the end of the file, the size of the file is increased by one.

VAR int.file : FILE [INT(M..100)] ('SEQ, 'INPUT);
OPEN (int.file, "ABC", 'OLD);
FOR i : INT(I..25) REPEAT % process first 25 components

VAR temp : INT(O..100);
READ (intfile, temp);
process (temp);

END REPEAT;
CLOSE (int-file, 'DELETE);

POSITION

POSITION returns the current file position. If the file is positioned at the start of the file (before

the first component), POSITION will return 1. When a file is opened, the position will be 1. When a
file is closed, the position is after the last record. If the file is positioned at the end of the fiie (after

the last component), POSITION will return the number of components in the file plus one.

SET POSITION

SET-POSITION moves a file to a specified position. If an attempt Is made to position the file

before 1 or past the end of the file, an exception is raised.

The procedure invocation

SET-POSITION (any-file, 1);

Is equivalent to a rewind command.

The procedure invocation

SET-POSITION (any-file, POSITION(any-file) - 1);

is equivalent to a backspace command.

SIZE

SIZE returns the number of components in a file. If the file is empty, SIZE returns zero. The

following example positions a file to its end and writes a new component.

SET-POSITION (any-file, SIZE(any-file) + 1);
WRITE (any-file, temp);



212 Appendix A.2 RED LRM 8 March 1979

EOF

EOF returns a boolean value signifying whether the, position is at the end of a file. If the file Is
positioned at its end, EOF returns TRUE. For example,

EOF (any-file)

FILERENAME

FILE-RENAME, in the presence of a file system, changes the name of an existing physical file. Any
associations made between files and that physical file continue to exist. The old file name, however,
can no longer be used.

OPEN (int-file, "ABC", 'OLD);
FILE-RENAME ("ABC", "XYZ"); % int-file is still associated

% with the same physical file,
% which is now known by
% another name

OPEN (int2-file, "ABC", 'OLD); % illegal, file "ABC" is now
% unknown

EXAMPLES

1) Copies entire file

VAR in-file : FILE [INT(I..100)] ('SEQ, 'INPUT);
VAR out-file : FILEEINT(I..100)] ('SEQ, 'OUT);

OPEN (in-file, "ABC*, 'OLD);
OPEN (out-file, OXYZO, 'NEW);

WHILE NOT EOF(in-file) REPEAT
VAR temp: INT(1..100);
READ (in-file, temp);
WRITE (out-file, temp);

END REPEAT;

CLOSE (in-file, 'DELETE);

CLOSE (out-file, 'SAVE);

2) Sequential update processing

VAR update-file : FILE [INT(1.o100)] ('SEQ, 'UPDATE);

OPEN (updatejfile,'"ABC", 'OLD);

WHILE NOT EOF(updatefile) REPEAT
VAR temp : INT(1..100);
READ (update-file, temp);
temp := temp + 1; % change data
SET-POSITION (update-file,

POSITION(update-file) - 1);
WRITE (update-file, temp); % write changed data

% over old component
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END REPEAT;

CLOSE (update-file, 'SAVE);

3) Copies entiro file n times
% file OPENs and CLOSEs occur outside proceduro to
% avoid trying files to particular physical files
PROC copy (n : INT(I..10));

FOR i : INT(1..n) REPEAT
WHILE NOT EOF(infjile) REPEAT

VAR temp : INT(1..100);
READ (in-file, temp);
WRITE (out-file, temp);

END REPEAT;
SET-POSITION (in-file, 1); % rewind

END REPEAT;
END PROC copy;

Implementation-Dependent Procedures and Functions

It is anticipated that a variety of implementation and/or device-dependent procedures and
functions will be available for setting and interrogating file characteristics such as protection, physical
blocking, buffering, and file space.

EXAMPLES

1) 370 VS example
VAR lib : FILELASCIIJ ('SEQ, 'INPUT);

SET-VOL (lib, #PRIVATE,RETAIN,SER=LIB0030)
SET-UNIT (lib, N2314-);
SETDISP (lib, "SHR-);

OPEN (lib, "XCOM.DTA3", 'OLD);

2) PDP-1O TOPS 10 example

VAR data : FILE[INT(l..50)] ('SEQ, 'OUTPUT);

SETPRT (data, "<057>*); % set protection code

SETVER (data, 4); % version 4

OPEN (data, "DSKC:mydata.dat[10,50J], 'NEW);
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A.3 TEXT FILES
A text file is a file whose components have an enumeration type. This enumeration type will

specify a character set, usually ASCII. The following example defines a text file which might be a card
reader.

VAR card-file : FILE [ASCII] ('SEQ, 'INPUT);
OPEN (card-file, "ABC", 'OLD);

CLOSE (card-file, 'DELETE);

Two text files are predefined, SYS-IN and SYS-OUT. These must be opened to associate them
with an appropriate physical file for input and output.

File Processin,

It is possible to perform character by character processing of a text file using the file processing
procedures and functions already described. It is usually more convenient, however, to think of a text
file as a sequence of lines rather than characters, where a line consists of the string of all characters
up to, but not including, the carriage-return line-feed characters ('CR & 'LF). For example, if a text
file contains

"ABC" & 'CR & 'IF & "DEFGH" & 'CR & 'ILF

then that text file is considered to be composed of two lines, "ABC" and "DEFGH". The type of the
characters making up the line are the same as the type of the file component. As shown in the above
example, lines within the same file may be of different lengths.

The READLN procedure and the WRITELN procedure are provided to read lines from and write
lines to text files. Also provided are: a SIZELN function to interrogate the size of the line about to
be read; definitions of READLN, SIZELN, and EOF which assume that the file name is the predefined file
SYS-IN; and a definition of WRITELN which assumes that the file name is the predefined file SYS-OUT.

READLN and WRITELN

READLN reads a line from an input or update text file into a variable. After the READLN, the file
position is increased by the number of components contained in the line just read plus the carriage
return and line feed. WRITELN writes a line from a variable of the component subtype Into an output
or update text file. After the WRITELN, the file position is increased by the number of components in
the line just written plus the carriage return and line feed.

SIZEIN

SIZELN returns the number of characters between the current position and the first end of line
('CR & 'ILF).

EXAMPLES

1) Echo input to output, one line at a time, using SYS-IN and SYS-OUT.
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OPEN (SYS-IN, "ABC", 'OLD);
OPEN (SYS-OUT, "XYZ", 'OLD);

WHILE NOT EOF REPEAT
VAR line : STRING[ASCII] (SIZELN);
READLN (line);
WRITELN (line);

END REPEAT;

CLOSE (SYS-IN, 'SAVE);
CLOSE (SYS-OUT, 'SAVE);

2) Echo input to output, one line at a time, using user-defined text files.

VAR in-file : FILE[ASCII] ('SEQ, 'INPUT);
VAR out-file : FILE [ASCII] ('SEQ, 'OUT);

OPEN (in-flle, "ABC", 'OLD);
OPEN (out-file, "XYZI, 'NEW);

WHILE NOT EOF(in-file) REPEAT
VAR line : STRING[ASCII] (SIZELN(injfile));
READLN (in-file, line);
WRITELN (out-file, line);

END REPEAT;

CLOSE (in-file, 'DELETE);
CLOSE (out-file, 'SAVE);

3) Reverse lines from SYS-IN and output onto SYS-OUT.

OPEN (SYS-IN, "ABC", 'OLD);
OPEN (SYS-OUT, "XYZ", 'OLD);

WHILE NOT EOF REPEAT
VAR line : STRINGEASCII] (SIZELN);
READLN (line);
FOR i : INT(1 .. line.LEN DIV 2) REPEAT

CONST J := line.LEN + 1 - 1;
CONST t := line (i);
line (i) : line (J);
line (J) t;

END REPEAT;
WRITELN (line);

END REPEAT;

CLOSE (SYS-IN, 'SAVE);

CLOSE (SYS-OUT, 'SAVE);

Conversions Upon Input

Conversions are defined from strings to booleans, integers, floating point numbers, and
enumeration values. Any leading or trailing blanks in the input strings are ignored. The form of the
remaining characters must be a legal literal of the type to which the form will be converted, with an
optional plus or minus sign preceding an integer or floating point literal. If the minus sign Is present,
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the literaL will be converted to a negative value.

If an integer or floating point subtype is specified as the target of the conversion, the string
literal must be within the target range or an exception is raised. If the string literal has more
precision than the target floating point subtype, truncation is performed.
Conversions UpoQutpu

Conversions are defined from booleans, integers, floating point numbers, and enumeration values
to strings. Each value is converted to the literal form and, if the value is a negative integer or floating
point number, a minus sign is inserted before the integer or floating point lte. al. The format of a
string Uteral of a floating point number is an optional minus sign followed by

n.nnnnE+mmm

or

n .nnnnE-mmm

where the number of n's is the precision of the floating point number.

If the target is a string subtype (that is, if a length is specified) and the length is longer than the
string tter4, the string is padded on the left with blanks. If the length is shorter than the string
literal, an exception is raised.

EXAMPLES

1) Reads in a line which contains only an integer;

VAR line : STRING[ASCII] (SIZELN);
READLN (line);
s := CNVT [INTI (line);

2) Writes out a line which contains only an integer.

WRITELN (CNVT [STRING [ASCII]] (1));

3) Reads Ir, a line which contains two integers, one in the first five columns and the next In the
second five columns.

VAR i,J : INT(I..50);
ASSERT SIZELN >= 10;
VAR s : STRING[ASCII] (SIZELN);
READLN (s);
i := CNVT [INTJ (s(1..5));
J CNVT [INT] (s(6..10));

Output Formatting

To simplify the conversion of floating point numbers to ASCII strings for output, two format
functions are provided in addition to the standard conversion function.

A floating point number can be output without an exponent by invoking the FORMAT function and
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passing the floating point value, the number of characters to be output to the left of the decimal point,
and the number of characters to be output to the right of the decimal point. Zeros on the left are not
suppressed. If the value is negative, a minus sign is output to the left of the string. The total number
of characters in

FORMAT (float-number, n, m)

is n + m + 2 (for the sign and decimal point). If the first significant digit would be lost, the
X_FORMAT exception is raised.

A floating point number can be output with an exponent by invoking the FORMAT function with
one additional parameter, the number of characters to be output to the ,right of E. The sign of the
exponent will always be printed. The first significant digit will appear as the leftmost character. If
the value is negative, a minus sign is printed to the left of the string. The total number of characters
in

FORMAT (float-number, n, m, o)

is n + m + o + 4 (for the sign, decimal point, E, and the exponent sign). If the exponent will not fit
in o digits, the XFORMAT exception is raised.

EXAMPLES

CNVT [STRING[ASCII]] (372.65)
CNVT [STRING[ASCIIJ] (-50.0)
CNVT [STRING[ASCIIJJ (10050.0)
CNVT [STRINGEASCII)] (572.0)
CNVT ESTRING[ASCIIJ] (.0000000001)

3.726E+2
-5.00E+1

1.00500E+4
5.720E+2

1.000000000E-10

FORMAT (372.65, 3, 3)
FORMAT (-50.0, 3, 3)
FORMAT (10050.0, 3, 3)
FORMAT (572.0, 3, 3)
FORMAT (.0000000001, 3,.3)

372.650
-050.000
XFORMAT
572.000
000.000

FORMAT (372.65, 3, 3, 3)
FORMAT (-50.0, 3, 3, 3)
FORMAT (10050.0, 3., 3, 3)
FORMAT (572.0, 3, 3, 3)
FORMAT (.0000000001, 3, 3, 3)

372.650E+000
-500.000E-001
100.500E+002
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572.GB0E+eeg
100 .000E-o12
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B. PRAGMATS

p aqmats

P R AGG pragmat

oragmat

SPACE

OPTIMIZE

TIME

c

SUPPRESS identifier

OPEN

CLOSE9

ON

LIST

OFF

KOHRECURSIVE

NONREENTRANT

ALIAS

OK

SHAPE
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Pragmats supply information, that does not affect program semantics, to the translator. Some

pragrnts are language-defined; all translators are expected to recognize these pragmats (although the

translator is not required to take any action). A translator can also permit additional pragmats to be

specified.

RULES

A list of pragmats can appear between any two tokens In a program. Certain of the pragmts are
further restricted in where they can appear. The restrictions for each pragmat is given below.

OPTIMIZE

This praogmat is used to inform the translator whether or not to optimize.

If the- OPTIMIZE pragmat appears on a scope, it is applied to this scope, and to all scopes nested
within this scope that do not, themselves, specify an OPTIMIZE pragmat.

If the OPTIMIZE pragmat appears on a variable or constant declaration, it controls the
representation for the data item.

If the OPTIMIZE pragmat appears on a type declaration, it applies to the representation of all data
items having that type.

SUPPRESS

Each of the identifiers must be exceptions. This pragmat indicates that no code need be
generated to check for any of the listed exceptions during elaboration of the scope on which it Is

specified. Code will still be generated, however, for the guarded bodies of guard statements which
explicitly handle the listed exceptions. If the exception actually occurs, the effect Is undefined.

OPEN and CLOSED

These pragmats are specified on a deferred declaration or an an Invocation of a deferred

declaration. On a deferred declaration, they refer to all invocations. On an invocation, they refer to
only that specific invocation. OPEN requests the translator to attempt to compile the invocation open

(inline). CLOSED requests the translator to attempt to compile the invocation closed (out of line).

LIST

This pragmat can be specified bftween any two tokens. LIST(OFF) specifies that the source
listing is not to be printed until the next LIST(ON) pragmat appears.

NONRECURSIVE and NONREENTRANT

These pragmats can be specified on a deferred declaration. They are used to inform the translator
that the deferred declaration will not be invoked recursively (.e., during Its own elaboration) or
reentrantly (simultaneously by two or more activations). If the translator or linker discovers that

these prngmats were wrong, an error will be issued.

K
This pragmat is used to turn off warning messages issued by the translator when It discovers that
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dangerous aliasing or dangerous sharing will, or might, occur. The OK(ALIAS) pragmat can appear
either on deferred declarations or an invocations. The OK(SHARE) pragmat can appear on variable
declarations, constant declarations, and formal parameter definitions.

Placement of Pragmats

Pragmats can appear:

a) On a scope. The pragmat must appear immediately before the first token of the scope. For
example,

PRAG (SUPPRESS (XINIT)) BEGIN
PRAG (OPTIMIZE (SPACE))

PRAG (OPTIMIZE (TIME)) PROC p;

END'POC p;
END;

b) On a o.riable declaration, constant declaration, formal parameter definition, or actual parameter.
The pragmat must appear between the last token and the terminating *;" or "," or ")". For
example,

VAR x : INT(O..10) OPTIMIZE (TIME);
PROC q (VAR y : INT(O..10)

PRAG (OK (SHARE)) IMPORTS x;

END PROC q;

qN(x PRAG(OK(ALIAS)) );

c) On a deferred declaration. For compound declarations, the praginat must appear immediately
before the ";" terminating the header. For type and abbreviation declarations, the pragmat must
appear immediately before the terminating ";". For example,

TYPE t : INT(O..10) PRAG (OPTIMIZE (TIME));
PROC p (v : BOOL) IMPORTS w PRAG (OPEN);

END ROC p;
FUNC q (x : t) > t PRAG (NONRECURSIVE, NONPEENTRANT);

END FUNC q;
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C. BUILT-IN TYPES
C-1 6001
Subtype Form

BOOL

Values: false,true

Literals: FALSE, TRUE

Operations

Purpose Operation Nots

logical negation NOT( BOOL) >BOOL
logical and AND(BOOLBOOL):>BOOL 1
logical or OR(BOOL,BOOL)=>BOOL 1
exclusive or XOR(BOOL,BOOL)1)BOOL
equality =(BOOL,BOOL)=>BOOL
assignment :=( BOOL,BOOL)

1) These are conditional operations. If the result is known after elaborating the left operand, the
right opersnd is not elaborated.
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C.2 ENUM

Subtype Forms
1) ENUM~e11,G12,...,elnJ
2) ENUM~ell,e12,...,alnJ(min..max)

where el's are enumeration literals and min and max are expressions with type
ENIJM~ell,e12,. .'.,elnJ. A single literal may appear only once In the extension. Form 1 Is
equivalent to

ENUM~e11,e12,...,elnJ(ell..eln)

Values

The values are the enumeration !iterals that appear in the type property list restricted to the
range mini. .max . The values are ordered so that If i~j then ell~elj.

Literals: all enumerqtlon lterals.

Operations

Purpose Operations Notes

successor SUCC(ENUM)=>ENUM 1
predecessor PRED(ENUM):)ENUM I
position POS(ENtJM)=>INT 2
equality =(ENUM.ENUM):>BOOL 3
ordering <(ENKMENUM'):>BOOL 3
assignment .=(ENUM,ENUM) 3,4

1) The result subtype is the subtype of the actual pdrameter. X.J1ANGE Is raised for the successor
of the last value and the predecessor of the first value.

2) When the actual parameter has type ENUMell,e12, . .91lnJ and value li, then the result
has subtype INT( 1 .. n ) and value i.

3) Both operands must have the same type.

4) X...RANGE Is raised If the source value is not valid for the target subtype.

Attribute-Inquiry

Attribute Result Subtype Result Value

ENUME ...3(in..max).MIN ENUM[ ...J1(mln..max) min
ENUME ... 1(mln..max).MAX ENUM[ ... J1(mln...max) max
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C.3 INT

Subtype Form

INT(min..max)

where min and max are expressions having type INT. If the values of min or max exceed the
Implementation defined largest range, then XMAXRANGE is raised.

Values

Integers (whole numbers) in the range mn. .max.

Literals: All integer literals.

Operations

Purpose Operation Notes

plus +(INT):>INT I
minus -(INT)=>INT 1
addition +(INT,INT)=>INT I
subtraction -(INT, INT)=>I'T 1
multiplication *(ININT)>INT 1
exponentiation **( INT, INT)=>INT 1,2
modulo MOD(INT,INT)=)INT 1,3,4
division DIV(INT,INT)=>INT 1,3,4
successor SUCC(INT)=>INT 5
predecessor PRED(INT)=>INT 5
equality =( INT, INT)=>BOOL
ordering <(INT, INT)=>BOOL
absolute value ABS(INT)=>INT I
assignment :=(INT,INT) 6
conversion IFLOAT( INT, INT)=>FLOAT 7

1) Result subtype is INT(imin,imax), where imin and imax values are selected by the
implermentation so that any result value will be included in the range. Note, however, that this
range will never exceed an implementation defined largest range even if result values outside
this range are possible. If this largest range is exceeded, XOVERFLOW is raised.

2) Raises XNEGEXP if the value of the second actual parameter value is less than zero. 1**=l

3) Raises XZERODIVIDE if the the value of the second actual parameter is zero.

4) The following identities hold:
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a) X=Y*(X DIV Y) + (X MOD Y)

b) Either X MOD Y = 0 or X MOD Y and Y have the same algebraic sign.

c) ABS(X MOD Y) < ABS(Y)

5) The result subtype is the subtype of the actual parameter. XRANGE is raised for the successor
of the last value and the predecessor of the first value.

6) Raises'X.RANGE if the source value is not valid for the target subtype.

7) This function is used to convert an integer to a floating point value. The first actual parameter
is the precision of the result and must be manifest. The second actual parameter is the integer
to be converted. See note I under FLOAT concerning the range of the result.

Attribute Inquiry

Attribute Result Subtype Result Value

INT(min..max).MIN INT(min..max) min
INT(min..max).MAX INT(min..max) max
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C.4 FLOAT

Subtype Form

FLOAT(prec,min. .max)

where prec has type INT and must be manifest and min and max are expressions having type FLOAT.
If the value of prec exceeds an implementation defined largest precision, or If the values of min and
max exceed an implementation defined largest range, then XJIAXRANGE Is raised.

Values

Approximate floating point numbers having precision prec In the renie min. .max . The precision
is the minimum number of decimal digits to be represented. For values around zero there Is a smallest
non-zero absolute value that is implementation dependent.

Literals.: All FLOAT lterals.

* Operations

Purpose Operation Notes

plus +(FLOAT)=>FLOAT 1
minus -(FLOAT)=>FLOAT I~
addition +(FLOAT,FLOAT)=>FLOAT I1
subtraction -(FLOAT,FLOAT)=>FLOAT 1
multiplication *(FLOAT,FLOAT)=>FLOAT 1
division /(FLOAT,FLOAT)=>FLOAT 1,2
exponentiation **(FLOAT, INT):>FLOAT 1,3
equality =(FLOAT, FLOAT)=)BOOL
ordering ((FLOAT,FLOAT)=>BOOL
absolute value ABS(FLOAT)0>FLOAT 1
assignment :=(FLOAT,FLOAT) 4
conversion FLOOR(FLOAT)=>INT 5,6

1) Result subtype is FLOAT(prec, 1mn. . imax) where prec is the maximum of the precisions of
the actual parameter(s). Imin and imax values are selected by the implementation so that any
result value will be included in the range. Note however that this range will never exceed an
implementation defined largest rangL& even if result values outside this range are possible. If
the largest range is exceeded, X-.OVERFLOW4 is raised.

2) Raises X...ZERO...DIVIDE if the value of the second actual parameter is zero.
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5) Rounds any fractional part down. FLOORMx (X X
6) See note I under INT operations.

AtLtribut~e 
Result Subtype Result _Value

FLOAT(prec, min max).PREC INT(prec..prec) 
precFLOAT(precminmax).MIN 

LOAT~prec,mnmax) 
minFLOAT(precmin..Max) .MAX FLOAT(prec,min..max') 
max

Purpose 
Operatio n

actual precision ACTP(FLOAT)=>INTradix 
RADIX(FLOAT):INTminimum exponent EMIN(FLOAT):>INTmaximum exponent EMAX(FLOAT):>INT
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C.5 RECORD

Subtype Form

RECORDtdI:,1Md2:S, ...,idn:Sn]

If several adjacent components have the same subtype, then

ldi,ldl+1,...,idJ:S

can be used as a shorthand for

idi :S, Idi+1:S, ... , idJ:S

Values

An ordered set of name-value pairs, one for each identifier, where the name of the l'th value Is
idi and the subtype of the i'th value is Si.

Components

A record variable (or constant) is made up of one or more component variables (or constants).
Each component is named by a distinct identifier. The components may have different subtypes.

Constructor: See Section 5.6.

Operations

Purpose Routine Notes
equality =(RECORD,RECORD)=>BOOL 1,2

assignment : =(RECOR,RECORD) 1,3

1) Actual parameters must have the same type.

2) Each of the component types must have = defined. Each of the components are compared using
= for the component type.

3) Each of the component types must have := defined. Each of the components are assigned in a
undefined order using the := for the component type.

Record Component Selection

The result of

R.C

where R has a RECORD type is component C of record . The result Is a variable If R is a variable.

(I



Appendix C.6 RED LRM 8 March 1979

C.6 UNION

Subtype Forms

1) UNION[idl:Sl,1d2:S2,...,tdn:Sn]
2) UNION[idl:Sl,id2;S2,...,idn:Sn](exp)

where exp has type ENIM'idl,'td2,...,'idn]. None of the idi may be TAG. If several

components have the same subtype then

tdi, tdl+1, ...,idJ:S

can be used as a shorthand for
tdt:S, td1+]:S,...,1Idj:S

Values

The discriminated union of the values of each of the component subtypes. Equivalently, a

tag-value pair in which the subtype of the value is the one named by the tag. Variables having

subtypes of form 2 may only have values whose tag is the value of exp.

Components

At any time a union variable (or constant) has exactly one named component variable (or constant).

Consider

UNION[idt:S1,1d2:S2,...,idn:Sn]

The possible component names are idl, 1d2, ... , ldn. The current component name is called the
ta&. When the tag is idi, the component variable (or constant) has subtype Si.

Constructor: See Section 5.6.

Operations

Purpose Operation Notes

equality =(UNION,UNION)=>BOOL 1,2
assignment :=(UNION,UNION) 1,3

1) Actual parameters must have the same type.

2) Each of the component types must have = defined. Result is true If types are equal and the
current components are equal.

3) Each of the component types must have := defined. The component Is assigned using :n for Its
type. XRANGE Is raised if the source is not valid for the target.

4
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Union Component Selection

The result of

UC

where U has a UNION type is component C of union U. If the selected union component is not
currently present, then the XTAG exception is raised. The result is a variable If U is a variable. The
result of

1 U. TAG

is a value with subtype ENUL 'dld2, 'dn] where the id's are the component names of
the UNION type of U in order. The result value is the name of the component currently held by the
union.
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C.7 ARRAY

Subtyve Form

ARRAY index1,index2,...,indexn OF comp

This is the subtype for an n-dimensional array whose index subtypes are indexl,
index2,-,indexn. The component subtype is comp. Each index subtype must be either an INT or
ENUM subtype.

Values

Arrays of values of the component subtype, where there is one -value in the array for each
combination of values of the index subtypes.

Components

An array variable (or constant) has zero or more components, variables (or constants), all with the
same component subtype. A component is selected by supplying a value for each Index. Note that if
any index subtype has no values, the array will have no components.

Constructor: See Section 5.6.

Operations

Purpose Operation Notes

equality =(ARRAY,ARRAY)=>BOOL 1,2
concatenate &(AARAY,ARRAY)= >ARRAY 1,3,4
assignment :=(ARRAY,ARRAY) 1,3,5

1) Actual parameters must have the same type.

2) The. component type must have = defined. The result is true if the index subtypes are equal
and corresponding components are equal.

3) The component type must have := defined. Components are assigned using := for the
component type. If the source and target overlap assignment is done in such a way that a
target component will not be modified before its use as a source component.

4) Only" 1-dimensional arrays whose index type is INT may be used as actual parameters. If the
actual parameters have respectively m and n components, then the index subtype of the result
is INT( 1 ...m+n).

5) XARRAY is raised if the number of values In the corresponding Index subtypes of the source
and the target are not equal.

Index Subtype

INDEXOF is described in Section 4.5.1.
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SImple Array Element Selection

The result of

A(exp],exp2,...,expn)

where A is a n-dimensional array and the type of each expi is the i'th index type of the array Is the
component of A at position specified by the value of the exp's. If the value of any bxp Is not valid for
the corresponding index subtype, the XSUBSCRIPT exception Is raised. The result is a variable If A
Is a variable.

Subarray Selection

The result of

A(min..max)

where A is a 1-dimensional array and the type of min and max is the Index type of that array, Is a
subarray of A. If the range min .. max is non-empty and contains an index outside the
array bounds, then XSUBSCRIPT is raised. The result has the same component type

as A. The index subtype of the result is the index subtype of A restricted to
the range min. .max. The result is a variable if A is a variable.
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C.8 STRING
Subtype Form

STRINGESJ( en)

where S Is an ENUM subtype and len Is an expression with type INT.

Values

Character strings with length len. Each character will be a value of the component subtype S. If
l en is less than or equal to zero then the string Is empty.

LlIterals: All string literals.

Operations

Pups prton Notes

concatenate &(ENUM, ENUM):>TRING 1,2
concatenate &(ENUM,STRING )=>STRING 1,2
concatenate &(STRING,ENUM)=>STRING 1,2
concatenate &(STRING,STRING):)STRING 1,2
equality =(STRING,STRING)=>BOOL 1,3
ordering ((STRING,STRING)>OOL 1,41
assignment :=(STRING,STRING) 1,5

1) Actual parameters must have the same type or have an ENUM type which Is the same as the
component type of the string.

2) The length of the result is the sum of the lengths of tho actual parameters.

3) If the actual parameters have a different length ther, the result is false.

4) Ordering is based on ordering of the type of the characters. Characters are compared left to
right with characters on the left being most significant. If the first actual parameter is a prefix
of a longer second parameter the result is true. If the second actual parameter Is a prefix of a
longer first actual parameter then the result Is false.

5) Both actual parameters must have the same length.

Attribute inquiry

Attribute Result SubtyPe Result Value

STRING(SI(len).LEN INT(len..len) len
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Component Selection

The result of

V(I)

where V is a STRING and I is an integer whose value is between 1 and the length of V, Is the I'th
character of V. If I is out of bounds, then X-SLJBSCRIPT is raised. If V has subtype STRINGS] (n)
then the result has subtype S. The result is a variable if V is a variable. The result of

V( I. .J)

where V is a string and I and J are integers whose value is between 1 and the length of V Is a
substring of V starting at position I and ending at position 3. If I or J is out of bounds, then
X...SUBSCRIPT is raised. If V has subtype STRINGSJ(n) then the result has subtype
STRING:SJ (J-1+1)

C.9 SET

Subtype Form

SET[S]

where S is an INT or ENUK subtype.

Values: Subsets of the set of all values of subtype S.

Operations

Purpose Operation N'otes,

equality .-(SET,SET)>BOOL 1
subset ((SET,SET)=>BOOL I
membership IN( t,SET~tJ )>BOOL
complement NOT(SET)=>SET 2
intersection AND(SET,SET)=>SET 1,2
union OR(SET,SET)=>SET 1,2
symmetric difference XOR( SET, SET)=>SET 1,2
assignment ::-(SET,SET) I

1) Both actual parameters must have the same subtype.

2) The result subtype is the same as the subtype of the actual parameter(s).
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C.10 ACT
5ubtype Form

ACT

Values- and Components

An ACT variable is used to control the elaboration of some activation and con~tains all information
needed to record all aspects of that elaboration. There are three components of the value of special
Interest to the user.

a) A state - which has three subcomponents as follows

1) active - a boolean. All ACT variables are automatically Initialized to be Inactive (i.e.
active~false).

2) waiting - a boolean. Initially false.

3) suspended - a boolean. Initially false.

b) A priority - A component whose subtype is INTO0. .255).

c) A clock - This measures the total real time that the activation has been running.

Predefined Constant: NIL-ACT. Representing a unique, always inactive value.

Operations

Purpose Operation Notes

current activation 'MiE=>ACT I
active * ACTIVE(ACT):>BOOL 2
waiting .WAITING(ACT)=>BOOL 3
suspended .*.SUSPENDED(ACT)=>BOOL 4
priority PRIORITY(ACT)=>INT 5
set priority ' -SET..PRIORITY(ACT,INT) 6
suspend / SUSPEND(ACT) 7
unsuspend *UNSUSPEND(ACT) 8
time :TIME(ACT)=>INT 9
delay *DELAY-JNTIL(ACT,INT) 10,11
delay .DELAY.JNTIL-INACTIVE(ACT) 11.12
wait -> SYNC..WAIT ()13

reset -SYNC...RESET( )14

signal . x ..SYtLC..SIGNAL(ACT) 15
create V. -TASK-.START( ACT, ACT) 16
finish /. .-TASK..EWDACT) 17
low level -, ..LOW-SYNC..WAIT 18

.-LOW..SYNC...RESET 18
,LOW-SYNC-.SIGNAL(ACT) 18,19

,....LOW..TASK.END( ACT) 20
terminate EXTERMINATE(ACT) 21
termir'ate control CRITICAL 22
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NONCRITICAL 23
assignment :=(ACTACT) 24
equality =(ACT,ACT)=>BOOL 25

1) Result is the activation variable associated with the Invoking activation.

2) Result is true if the specified activation is active.

3) Result is true if the specified activation variable is active and waiting.

4) Result is true if the specified activation variable is suspended.

5) Result is the priority of the specified activation.

6) Sets the priority of the specified activation.

7) Sets suspended to true.

8) Sets suspended to false.

9) The result is the value of the activation clock of the specified activation in ticks.

10) Delays until the activation clock of the specified activation is greater than or equal to the time
specified in ticks.

11) These operations can be used as waiting invocations in the wait statement.

12) Waits until the specified activation variable Is inactive.

13) Equivalent to LOW.SYNC.WAIT if the current activation was created with an ACT-type activation
variable, or to SYNCWAIT(av) if the current activation was created with activation variable av
of user-defined type.

14) Equivalent to LOWSYNCRESET or SYNCRESET(av) depending on how activation a was
created.

15) Equivalent to LOWSYNCSIGNAL(a) or SYNCSIGNAL(av) depending on how activation a. was
created.

16) Used to start an activation. Called as part of the elaboration of a task invocation statement.
Assigns second parameter to first.

17) Equivalent to LOWLTASKEND(a) or TASKEND(av) as in (15).

18) LOWSYNC.WAIT sets waiting to true unless LOWSYNCSIGNAL has been called for this
activation since LOWSYNCRESET was invoked.

19) Sets waiting to false.

20) Invoked when an activation is complete. Can also be used to terminate some other task.

21) For the given activation, sets waiting to false, and raises the XTERMINATE exception.

22) Make activation critical.

23) Make activation noncritical.

24) This is a sharing assignment.

25) The result is true if both actual parameters are the same activation variable.
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C.11 MAILBOX

Subtype Form

MAILBOXES] (len)

where S is the subtype of messages and len is an integer which is greater than or equal to zero.

Assignment must be defined for the type of S.

Values and Components

A mailbox can hold up to len messages having subtype S. All mailbox variables rre automatically
initialized to hold no messages. Messages are queued first-in first-out.

Qoerations

Purpose er Notes '

send /SEND(AILOX~t,t)\ 1.2 la
receive 2,ECEIVE(MAILBOX~t],t)3 
test empty NT 4
test full FULLSLOTS (MAILBOX)=>INT 5
conditional send CONDSEND

(MAILBOX[t],t,BOOL) 6
conditonal receive CONDRECEIVE

... _1J OX[t],t,BOOL) 7
low level ops SENDST 8

SENDREQUEST(MAILBOX[t],t) 9
SENDTEST(MAILBOX[t] ,t) 9
SEND-COMPLETE
(MAILBOX[t],t) 9
SENDREVOKE(MAILBOX[t],t) 9
RECEIVEST 10
RECEIVE-REQUEST
(MAILBOX[t],t) 11
RECEIVE-TEST(MAILBOX[t],t) 11
RECEIVE-COMPLETE
(MAILBOX[t],t) 11
RECEIVE-REVOKE

. . ..... .(MAILBOX[t], t) 11

assignment :=(MAILBOX,MAILBOX) 12
equality =(MAILBOX,MAILBOX) 13

1) Sends a message to a'mailbox. -Sender waits if the mailbox is full until the mailbox is no longer
full. If there ave several waiting senders they are queued first-in first-out.

2) These operations can be used as waiting Invocations in the wait statement. If SEND is called on
a zero length mailbox, in a multi-way wait statement, then XEMPTY.JAILBOX is called.

3) Receives a message from a mailbox. Receiver waits if the mailbox is empty until the mailbox Is
no longer empty. If there are several waiting receivers, they are queued first-In first-out.

4) Count of empty message slots plus waiting receivers.

5) Count of full message slots plus waiting senders.
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6) Try to send; indicate success as a returned boolean (truezsuccess. Never walt.

7) Try to receive; indicate success as a returned boolean. Never walt.

8) Subtype for low-level implementation of sends. See Section 14.3.1.

9) Operations for low-level Implementation of sends.

10) Subtype for low-level implementation of receives. See Section 14.3.1.

11) Operations for low-level implementation of receives.

12) This is a sharing assignment.

13) The result is true if both actual parameters are the same mailbox.

Attribute Inquiry

Attribute Result Subtype Result Value

-. MAILBOX[S](len).LEN INT(len..len) Ian

C.12 DATALOCK

Subtype Form

DATA-LOCK

Values and Components

A data lock is ether locked or unlocked. All data lock variables are automatically initialized to be
unlocked. If a data iock is locked it has an owner, which is the activation that locked it.

Operations

Purpose Operation Notes

test locked EXCESSLOCKS(DATALOCK)=>INT
owner OWNER(DATALOCK )=>ACT
lock LOCK(DATALOCK) 2,3
unlock UNLOCK(DATALOCK) 1,3
conditional lock CONDLOCK( DATALOCK, BOOL)

1) If not locked, raises XLOCK.

2) If data lock is unlocked sets the data lock to be locked and the owner to be the Invoking
activation; 'otherwise the InvoRer waits until the data lock becomes unlocked. If there are
several activations suspended these are processed on a first-come first-served basis.

3) These are low-level operations used to implement user-defined locking operations and In the
implementation of the REGION statement.
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C.13 LATCH

The LATCH type is the basic low level synchronization type.

Subtype Form: LATCH

Values: latched, unlatched

Operations

Purpose Routine Notes

lock LOCK(LATCH) I
unlock UNLOCK (LATCH) 2
test and set CONDLOCK(LATCH,BOOL) 3

1) Waits until the actual parameter has value unlatched; then changes the value to latched and

continues. If several tasks are waiting, only one will continue.

2) Changes the value of the actual parameter to unlatched.

3) The second parameter is a status result. If latch has the value unlatched, then performs a LOCK
and sets result to true, otherwise sets result to false.
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C.14 FILE

Subtype Form

FILE [S] (access, use)

Each component will have subtype S. Assignment must be defined for the type of S. The type of
access must be ENUNC 'SEQ, 'RANDOM J. The type of use must be ENUN[ 'INPUT, 'OUTPUT,
'UPDATE 3.

Values and Components

A file variable (also called a file) is associated with an ordered sequence of components each
having subtype S. The components will reside on some particular physical file of the target system.
A file variable is associated with a particular physical file by invocation of the OPEN procedure (the
file is then said to be open). The association is broken by invocation of the CLOSE procedure (the file
Is then said to be closed). Initially all files are closed.

The access of a file determines how the components are accessed.

'SEQ sequential access

'RANDOM random access

The use of a file determines how the file will be used.

'INPUT components are read but not written.

'OUTPUT components are written but not read.

'UPDATE components are both written and read.

When a file is open it has a size which is the number of components in the file and a position which Is
an integer whose value is greater than or equal to I and which is less than or equal to the size of the
file plus 1. Position 1 is before all components in the file. Position 2 Is before the second component,
etc.

I,
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Ooerations

Purpose Operation Notes

open OPEN(FILE,STRING,
ENUM[ 'OLD), 'NEW] 1,2

close CLOSEFILE,
ENUH['SAVE, 'DELETE]) 3,4

size SIZE(FILE)=>INT 3,5,6,15
position POSITION(FILE)=>INT 3,7,15
set position SETPOSITION(FILE,INT) 3,5,8
end of file EOF(FILE)=>BOOL 3,9,15
read READ(FILE,t) 3,10,11,12
write WRITE(FILE,t) 3,11;13,14
read line READLN(FILE,STRING) 15,16,17
write line WRITELN(FILE,STRING) 16,18
line size SIZELN(FILE)=>INT 15,16,19
read line READLN(STRING) 15,20
write line WRITELN(STRING) 21
size line SIZELNo=>INT 15,23
eof EOF() 15,22
other see note 24

1) Raises XFILE if file is already open.

2) The string specifies the physical file with which the file variable is to be associated. The
interpretation of the string is implementation-dependent. If there is no such device or physical
file then the X.FILENAME exception is raised. The enumeration value specifies whether an
existing file is to be used ('OLD) or a new file is to be created ('NEW). If for 'OLD there Is no
existing physical file then the X._NOFILE exception is raised. The position of the file is set to 1.
A 'NEW file initially has size 0

3) Raises XFILE if file is not open.

4) The enumeration value 'SAVE indicates that the physical file is to be saved for use by latter
programs. The value 'DELETE indicates that the physical file is not be saved. The current
position is taken as the new end of file.

5) These procedures and functions may not be available for all physical files. If not, the XFILE
exception is raised. They will, however, always be available for 'RANDOM access files.

6) Returns the size of the file.

7) Returns the current position.

8) This procedure repositions the file to the specified new position. If the integer parameter Is
less than I 6r greater than the iize of the file +1 then the XFILEPOS exception Is raised.

9) Returns true if the position of the file is equal to the size of the file +1.

10> Legal only If use is 'INPUT or IUPDATE. Otherwise, XFILE is raised.

11) The second parameter must have the same type as the components of the file.

12) The component following the current position is assigned to the second parameter. The current
position is incremented by one. If EOF is true, then the XEOF exception is raised.

13) If EOF is true prior to the invocation, then the number of components In the file Is increased by
one. The component following the current position is assigned the value of the second
parameter. The current position is Incremented by one.
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14) Legal only if use is 'OUTPUT or 'UPDATE. Otherwise XFILE is raised.

15) These are abnormal functions (see ).

16) The file type must be FILE[ENUMI[...]. The ENUM type must Include 'CR and 'LF.

17) READLN reads components until a 'CR followed by a LIF is found. All components prior to the

ICR 'LF are returned as characters in the string. Raises XLN if no ICR followed by 'LF is

found or if the string is of the wrong length.

18) Writes each character in the string as a component In the file and then writes a 'CR followed

by a 'LF.

19) Returns the number of characters between the current position and the position Immediately

before the next 'CR followed by 'LF.

20) READLN(s) is equivalent to READLN(SYSIN,s).

21) WRITELN(s) is equivalent to WRITELN(SYSOUT,s).

22) EOF is equivalent to EOF(SYSIN).

23) SIZELN is equivalent to SIZELN(SYSIN).

24) It is anticipated that a variety of implementation-dependent and/or device-dependent routines

will be available for setting and interrogating file characteristics such as protection, physical

blocking, and file space.

Attribute Inouiry

Attribute Result Subtve Result Valu.r

FILE[SJ(access, use).ACCESS ENUH['SEQ, 'RANDOM] access

FILE[SI(access, use).USE ENUH['INPUT, 'OUTPUT, use
'UPDATE]
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C.15 ASCII

The 128 character ASCII character set is a language defined abbreviation. Its definition appears

below.
1ABBREV ASCII : ENUM(

'NUL, % 00 null

'SOH, % 01 start of heading
'STX, % 02 start of text
'ETX, % 03 end of text
'EOT, % 04 end of transmission
'ENQ, % 05 enquiry
'ACK, % 06 acknowledge
'BEL, % 07 bell
IBS, % 08 backspace
'HT, % 09 horizontal tabulation

'ILF, % OA line feed
'VT, % 0B vertical tabulation

'FF, % OC form feed
'CR, % OD carriage return

',o % OE shift out

'SIl % OF shift in

IDLE, % 10 data link escape

'DC1, % 11 device control 1

'DC2, % 12 device control 2

DC3, % 13 device control 3
'0C4, % 14 device control 4

'NAK, % 15 negative acknowledge
'SYN, % 16 synchronous idle
'ETB, % 17 end of transmission block

'CAN, % 18 cancel
'EM, % 19 end of medium
'SUB, % 'A substitute
'ESC, % 18 escape
'FS, % 1C file separator
'GS, % iD group separator
'RS, % 1E record separator
'US, % IF unit separator
'SP % 20 blank space (normally non-printing)

'EXCLAIM, % 21 1 exclamation point
'QUOTE, % 22 quotation marks
'NUMBER, % 23 # number sign
'DOLLAR, % 24 S dollar sign
'PERCENT, % 25 % percent
'AMPERSAND, % 26 & ampersand
'APOS, % 27 ' apostrophe
'LPAREN, % 28 ( opening parenthesis
'RPAREN, % 29 ) closing parenthesis
'STAR, % 2A * asterisk
'PLUS, % 2B p1Is
'COMMA, % 2C , comma
'MINUS, % 2D - hyphen (minus)
'PERIOD, % 2E period
'SLASH, % 2F / slant
IN_0, % 30 0
'Nl % 31 1
'N_2, % 32 2
IN_3, % 33 3
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N-4, % 34 4
N-5, % 35 5

'N-6, % 36 6
N-7, % 37 7

'N-8, % 38 8
'N-9, % 39 9
'COLON, % 3A : colon
'SEMI, % 3B ; semicolon
'LESS, % 3C < less than
'EQUAL, % 3D = equals
'GREATER, % 3E > greater than
'QUESTION, % 3F ? question mark
'AT, % 40 @ commercial at
'A, % 41 A
B, % 42 B

1% 5A Z
'LBRACKET, % 5B [ opening bracket
'BSLASH, % 5C \ reverse slant
'RBRACKET, % 50 J closing bracket
'CIRCUMFLEX, % 5E ^  circumflex
'UNDERSCORE, % 5F underline
'GRAVE, % 60 % grave accent
I LA, % 61 a
'LB, % 62 b

SL_Z, % 7A z
'LBRACE, % 7B { opening brace
'BAR, % 7C I vertical line
'RBRACE,, % 7D } closing braceTILDE, % 7E -overline (tilde)

'DEL % 7F delete 3;

F



246 Appendix D RED LRM 8 March 1979

t,



INTERMETRICS INC. Appendix D 247

D. EXCEPTIONS

Exception Raised When

X_.ASSERT Assertion is false

XCASE No case value label or else clause matching case expression value

X_EMPTYJMAILBOX Attempt to define zero length mailbox

X_EOF Attempt to read past eof

X__-XFILE File processing attempted on unopen file, file processing routine not available for
file, routine not available for file, or attempt to wait on input file or read output
file

XFILENAME Physical file name unknown

XFILEPOS Attempt to position outside of file

XFREE Attempt to free space for dynamic variable still referenced by Indirect variable

X_INIT Attempt to access uninitialized variable

X_LN 'CR not followed by 'LF

XLOCK Attempt to unlock data-lock which already is unlocked or attempt to find owner of
unlocked data-lock

XMAXRANGE Value is outside of implementation-defined largest range

XNEGEXP Attempt to raise a number to a negative power

XNOFILE Designation of nonexistent file as 'OLD

XOVERFLOW Result of operation is outside of implementation-selected range for INT or FLOAT

XMRANGE Source value is not valid for the target (ENUM, INT, FLOAT)

XSUBSCRIPT Attempt to access beyond ARRAY or STRING bounds

XSUBTYPE Attempt to pass actual of different subtype to VAR or READONLY formal parameter

XTAG Selection of UNION component not currently present

X_UNHANDLED Exception has not been handled when completing its scope

XZERODIVIDE Attempt to divide INT or FLOAT by zero
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E. GLOSSARY
abbreviation

shorthand notation for type or subtype specification.

abnormal function
a function upon which common subexpression elimination may not be performed.

access methodsequentktl or random file access.

active activation variable
an activation variable associated with a specific activation.

activation
an elaboration of a task which can occur concurrent with other activations.

activation clock
measures total real time that a particular activation has run.

activation variable
means for 'naming' an activation.

actual parameter
expression in an invocation, bound to formal parameter In declaration of tile Invoked
deferred unit.

assignable types
those types for which assignment (:=) is defined.

allocation statement
creates a dynamic variable.

attributes
subtype constraints.

available definitions
for an open scope, all definitions known in the immediately enclosng scope. Ft a closed
scope, all definitions, except variable, goto label, and matching identifier definitions, from the
immediately enclosing scope, together with all imported definitions.

binding
association of actual with formal parameters.

body
possibly empty sequence of declarations, assertions, and statements.

closed scope
scope which is similar to open scope, except that variable definitions only become available
by being imported.

compound statement or declaration
statement or declaration containing a body.

conditional translation
selection, during translation, between alternative bodies or selection of a single union
component to be present

conflicting definitions
definitions of the same name among which a use of the name cannot discriminate.

constant
data item, having a subtype, whose value cannot be modified.

constructor
way of building a value of a record, union, array, or user-defined type.



dangerous sharing
non-orderly use of a shared variable.

declaration
one form of language construct used for defining a name.

deferred declaration
a declaration which is elaborated when invoked, not when encountered.

deferred unit
the entity defined by a deferred declaration.

definition
any way of associating a name with a language construct.

delaying
non-busy waiting of an activation upon a clock value.

data item
defined variables and constants, dynamic variables, readonly data items and temporary data
items.

dot selection
qualification to obtain component of record or union. Also used to dereference pointers.

c,'namic variable
the variable pointed to be an indirect variable or constant.

elaboration
the action required at translation time and runtime to cause statement execution, expression
evaluation, and declaration processing.

exception
an exceptional condition which can be raised and handled.

explicit overloading
overloading which occurs by writing two definitions of the same name with different
interfaces.

exported definitions
definitions local to a capsule which may be made known outside the capsule.

exposing
making exported names of a capsule known.

extermination
raising XTERMINATE in another activation.

external capsule
a capsule which was separately translated.

file
a variable of a FILE type which is associated with an ordered collection of components, all
having the same type.

file use
input, output, or update files.

flow diagrams
syntactical description technique.

formal parameter

placeholder within a deferred declaration.

generic constraint
restricts the set of replacement elements which may be associated with a particular generic
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parameter.

generic overloading
overloading which occurs when a deferred declaration is replicated generically.

generic parameter
placeholder within a generic declaration.

generated set
all definitions created as a result of a generic declaration.

goto label
used only as target of goto statement.

guarded body
body of a guard statement in which an qxception might be raised and, so, Is protected.

handler
part of a guard statement which specifies a body to be elaborated If a specific exception Is
raised during elaboration of the guarded body.

handling an exception
terminating the guarded body in which the exception Is raised and attempting to find a
handler for the exception.

immediate declaration
a declaration which is elaborated when encountered.

imported definitions
variable definitions which become available to closed scopes through an imports list.

inactive activation variable
an activation variable associated with no activation.

index counter for repeat statement.

indirect variable or constant
typed pointer.

infix operator
operator (**, M, , MOD, DIV, &, +, -, =, <, (:, >, IN, AND, OR, XOR) which takes two
operands.

initialization
assigning a first value to a data item.

inquiry
operations which interrogate the type, subtype, or attributes of data Items.

interface
information, contained in both definitions and uses of overloaded names, which is used to

(associate a use with a single definition.

known in a scope
all definitions which can be associated with a use of a name within a scope. Includes all
local definitions plus all non-conflicting available definitions.

lifetime
the span of execution time that a construct exists.

literal
token used to specify a value of a built-in or user-defined type.

local definitions
all definitions either defined in a scope or exposed into it by a capsule Invocation.
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mailbox
queue of messages used for inter-activation communication.

manifest expression
expression which is elaborated during translation.

matching identifier
used for documentation and as target of exit statement.

message passing
transmittal of messages between activations by means of mailboxes.

mutual exclusion
orderly access to shared variables accomplished via the region statement.

name an identifier or definable symbol associated with defined language constructs.

needed name
a name which appears In a generic declaration and is bound at point of invocation rather
than point of generic declaration.

new capsule
a capsule whose invocation results in the elaboration of the capsule (and therefore creation
of separate copies of local data).

new type
type, defined by type declaration, distinct from all other types.

normal function
a function upon which common subexprestion elimination may be done.

old capsulea capsule whose invocation does not result in elaboration of the capsule.

open scope
scopes following normal block-structured rules.

overloading
association of a single name with multiple deferred units of the same kind.

own data
data local to a capsule.

pattern declaration
the deferred declaration which is generically replicated.

physical file
a file on a storage medium, a physical device, or a file on a storage medium representing a
physical device.

precedence
for operators, the relative strength of operand association.

prefix operator
operator (, -, NOT) which takes only a single operand.

primary
expression operand.

priority
absolute (rather than relative) importance of an activation.

raising an exception
causing the occurrence of an exceptional condition which may be handled by a guard
statement.
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random file
a file which permits direct access to any component, regardless of Its position with respect
to other components.

range
a contiguous sequence of values of some type.

readonly data item
variable whose use is restricted to access only in some contexts but which may still be
modified in other contexts.

real-time clock
measures elapsed real-time since program began to run.

renaming
changing of a name through a capsule invocation.

replacement element
the item which appears in an invc ation and Is substituted for the corresponding generic
parameter in the definition.

result type or subtype
type or subtype of function result.

routine
procedure, function, or operator.

scheduler
determines which activation will next run. The built-In priority scheduler may be replaced
with a user-defined' scheduler.

sequential file
file which is processed by accessing each component In succession.

shared variable
a variable which is accessible to multiple activations.

side-effect
modification of data by a function when the lifetime of the data is longer than the lifetime of
the function inv-)cation.

signature
number, order, and types of parameters. Part of interface.

slice
contiguous components contained within one dimensional array.

standard file
a file whose components do not have an enumeration type.

state of a file
initial state (old or new) and final disposition (save or delete).

subscripting
qualification to obtain component of array or array slice.

subtype
translation time and runtime properties of a data item.

subtype constraints
round-bracketed information of subtype which can be left unresolved until runtime.

temporary data item
data item whose lifetime is tied to its use rather than to a scope. Includes the result of
literals, constructors, functions, and attribute inquiry.
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text file
a file whose components have an enumeration type.

translation time property list
part of the Interface of deferred declarations used for resolving name conflicts.

type
translation time properties of a data item.

type and subtype resolution
determination of type and subtype of expression.

type checking
verifying, at translation time, that two types are the sAme.

underlying subtype
subtype specification used to define a new type.

underlying type
type of underlying subtype.

underlying variable or constant
representation (obtained by .ALL) of variable or constant of a new type. An underlying
variable may also be the dynamic variable pointed to by an indirect variable or constant.

value labels
labels of case statement.

variable
data item, having a subtype, whose value can be modified. Includes defined and dynamic
variables.

visible definitions
definitions which are exported from a capsule and exposed by a capsule Invocation.

waiting
non-busy suspension of an activation until some event occurs.
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F. DIAGRAM CROSS REFERENCE
DIAGRAM CROSS-REFERENCE

(alphabetically)

LEXICAL SYNTAX DIAGRAMS

Diagram Section
Identifier Number

boolean literal I 2.3.9

comment K 2.4.1

enum literal G 2.3.7

float literal F 2.3.6

identifier C 2.3.4

indirect literal J 2.3.10

int literal E 2.3.6

literal 0 2.3.S

pragmat token separator L 2.4.2

string literal H 2.3.8

token A 2.2

token separator B 2.2
DIAGRAM CROSS-REFERENCE

(by diagram identifier)

LEXICAL SYNTAX DIAGRAMS

Diagram Section
Identifier Number

token A 2.2

token separator B 2.2

identifier C 2.3.4

literal D 2.3.5

nt literal E 2.3.6

float li-teral F 2.3.6

enum literal G 2.3.7

string literal H 2.3.8

boolean literal I 2.3.9

indirect literal J 2.3.10

comment K 2.4.1

pragmat token separator L 2.4.2
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DIAGRAM CROSS-REFERENCE

(alphabetically)

GRAMMAR SYNTAX DIAGRAMS

Diagram Section
Identifier Number

abbreviation declaration 17 4.4.1
abbreviation invocation 18 4.4.1
actual parameters 53 7.3
actual translation time properties 67 11.1.2
allocation statement 24 4.4.3
array constructor 33 S.6
assertion 8 3,4
assignment statement 40 6.1
attribute inquiry 25 4.5.3
begin statement 41 6.2
body 2 3.2
body element 3 3.2
capsule declaration 54 8.1
capsule invocation declaration 55 8.1
case statement 43 6.4
compound declaration 7 3.3
compound statement 39 6
constant 29 S.3
constant declaration 16 4.2.1
constructor 31 S.6
declaration 4 3.3
deferred declaration 6 3.3
definable symbol 81 13.1
direct type declaration 20 4.4.2
exception declaration 57 9.1
exit statement 45 6.6
expression 26 G.2
formal parameters 52 7.3
formal translation time properties 66 11.1.2
function declaration 58 7.2
function invocation primary SI 7.2
generic constraint 71 11.3
generic cleclara 'on 69 11.3
generic parameters 78 11.3
goto statement 47 6.8
guard statement 58 9.2
if statement 42 6.3
immediate declaration 5 3.3
imports 9 3.7
indirect type decraration 23 4.4.3
location specification 88 12.3
needed item 77 11.4
needs 76 11.4
operation generic constraint 74 11.3.3
pragmat 83 B
pragmats 82 B
primary 27 5.3
procedure declaration 48 7.1
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procedure invocation statement 49 7.1

raise statement 59 9.3

range 14 4.1.7

record or union constructor 32 S.6

referencing form 38 6.3

region statement 65 8.7

repeat statement 44 G.S

representational item 79 12.2

representational specification 78 12.2

reraice statement 6 9.4

resolved constant 35 5.7

return statement 46 6.7

set constructor 34 5.6

simple statement 38 6

statement 36 6

subtype 12 4,1.6

subtype comparison 13 4.1.6

subtype generic constraint 73 11.3.2

task declaration 61 16.1

task invocation statement 62 16.1

translation time property 68 11.1.2

translation unit 1 3.1

type 18 4.1.6

type comparison 11 4.1.5

type declaration 19 4.4.2

type generic constraint 72 L.L.3.

unlabeled statement 37 6

user-defined subtype 22 4.4.2

user-defined type 21 4.4.2

value generic constraint 75 11.3.4

variable 28 6.3

variable declaration 15 4.2.1

visible list 56 8.2

wait statement 63 18.5

waiting invocation 64 18.6



258 Appendix F RED LRM 8 March 1979

DIAGRAM CROSS-REFERENCE

(by diagram identifier)

GRAMMAR SYNTAX DIAGRAMS

Diagram Section

Identifier Number

translation unit 1 3.1
body 2 3.2
body element 3 3.2
declaration 4 3.3
immediate declaration S 3.3
deferred .declaration 6 3.3
compound declaration 7 3.3
assertion 8 3.4
imports 9 3.7
type 18 4.1.5
type comparison 11 4.1.5
subtype 12 4.1.6
subtype comparison 13 4.1.6
range 14 4.1.7
variable declaration 15 4.2.1
constant declaration 16 4.2.1
abbreviation declaration 17 4.4.1
abbreviation invocation 18 4.4.1
type declaration 19 4.4.2
direct type declaration 20 4.4.2
user-defined type 21 4.4.2
user-defined subtype 22 4.4.2
indirect type declaration 23 4.4.3
allocation statement 24 4.4.3
attribute inquiry 25 4.5.3
expression 26 S.2
primary 27 5.3
variable 28 5.3
constant 29 5.3
referencing form 30 5.3
constructor 31 5.6
record or union constructor 32 5.6
array constructor 33 5.6
set constructor 34 5.6
resolved constant 35 5.7
statement 36 6
unlabeled statement 37 6
simple statement 38 6
compound statement 39 6
assignment statement 48 6.1
begin statement 41 6.2
if statement 42 6.3
case statement 43 6.4
repeat statement 44 6.S
exit statement 45 6.6
return statement 46 6.7
goto statement 47 6.8
procedure declaration 7.1
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procedure invocation statement 49 7.1

function declaration so 7.2
function invocation primary S1 7.2
formal parameters 52 7.3
actual parameters 53 7.3
capsule declaration 54 8.1
capsule invocation declaration 55 8.1
visible list 5G 8.2
exception declaration 57 9.1
guard statement S8 3.2
raise statement 59 9.3
reraise statement G8 9.4
task declaration G1 1.4
task invocation statement G2 18.1
wait statement 63 18.6
waiting invocation G4 18.5
region statement 66 18.7
formal translation time properties G6 11.1.2
actuai translation time properties 67 11.1.2
translation time property G8 11.1.2
generic declaration 69 11.3
generic parameters 78 11.3
generic constraint 71 11.3
type generic constraint 72 11.3.1
subtype generic constraint 73 11.3.2
operation generic constraint 74 11.3.3
value generic constraint 76 11.3.4
needs 76 11.4
needed item 77 11.4
representational specification 78 .12.2
representational Item 79 12.2
location specification 88 12.3
definable symbol 81 13.1
pragma ts 82 B
pragmat 83 B

1'
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DIAGRAM CROSS-REFERENCE

(alphabetically)

XREF OF LEXICAL NAMES

Diagram Section
Identifier Number

boolean literal
literal D 2.3.S

comment
token separator B 2.2

enum literal
literal D 2.3.S
type 18 4.1.5

float literal
literal 0 2.3.5

Identifier
abbreviation declaration 17 4.4.1
abbreviation invocation 18 4.4.1
attribute inquiry 25 4.5.3
capsule declaration 64 8.1
capsule invocation declaration 55 8.1
constant declaration 16 4.2.1
definable symbol 81 13.1
direct type declaration 28 4.4.2
enum literal G 2.3.7
exception declaration 57 9.1
exit statement 45 6.6
formal parameters S2 7.3
function declaration 58 7.2
function invocation primary 51 7.2
generic parameters 70 11.3
goto statement 47 6.8
guard statement 58 9.2
imports 9 3.7
indirect type declaration 23 4.4.3
needed item 77 11.4
procedure declaration 48 7.1
procedure invocation statement 49 7.1
raise statement 59 9.3
record or union constructor 32 S.6
referencing form 38 5.3
repeat statement 44 6.5
representational item 79 12.2
statement 36 6
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subtype 12 4.1.G
subtype generic constraint 73 11.3.2
task declaration 61 10.1
task invocation statement 62 18.1
token A 2.2
translation time property 68 11.1.2
type 18 4.1.5
type generic constraint 72 11.3.1
unlabeled statement 37 6
user-defined subtype 22 4.4.2
user-defined type 21 4.4.2
variable declaration 15 4.2.1
visible list 56 8.2
waiting invocation 64 18.5

Indirect literal
literal 0 2.3.5

int literal
literal 0 2.3.5

literal
constant 29 5.3
token A 2.2

pragmat token separator

string literal
literal 0 2.3.5

token

token separator
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DIAGRAM CROSS-REFERENCE

(alphabetically)

XREF OF SYNTACTIC NAMES

Oiagram Section
Identifier Number

abbreviation declaration
deferred declaration 6 3.3

abbreviation invocation
subtype 12 4.1.6
type 10 4.1.S

actual parameters
abbreviation invocation 18 4.4.1
allocation statement 24 4.4.3
capsule invocation declaration 55 8.1
function invocation primary 51 7.2
procedure invocation statement 49 7.1
task invocation statement 62 18.1
user-defined subtype 22 4.4.2

actual translation time properties
abbrevt1finn invocation 18 4.4.1
capsule invocation declaration S5 8.1
function invocation primary S1 7.2
procedure invocation statement 49 7.1
task invocation statement 62 18.1
translation time property 68 11.1.2
user-defined subtype 22 4.4.2
user-defined type 21 4.4.2

allocation statement
simple statement 38 6

array constructor
constructor 31 5.6

assertion
body element 3 3.2

assignment statement
simple statement 38 6
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attribute Inquiry
constant 29 5.3

begin statement
compound statement 39 6

body
begin statement 41 6.2
capsule declaration 54 8.1
case statement 43 6.4
function declaration 58 7.2
guard statement 58 9.2
if statement 42 6.3
procedure declaration 48 7.1
region statement G5 18.7
repeat statement 44 6.5
task declaration 61 18.1
wait statement 63 18.5

body element
body 2 3.2

capsule declaration
compound declaration 7 3.3
translation unit 1 3.1

capsule invocation declaration
immediate declaration 5 3.3

case statement
compound statement 39 6

compound declaration
deferred declaration 6 3.3

compound statement
unlabeled statement 37 6

constant
primary 27 5.3

constant declaration
immediate declaration 5 3.3

constructor
constant 29 5.3
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declaration
body element 3 3.2

deferred declaration
declaration 4 3.3
generic declaration 69 11.3

defInable symbol
function declaration se 7.2
needed item 77 11.4
procedure declaration 48 7.1.

direct type declaration
type declaration 19 4.4.2

exception declaration
immediate declaration 3.3

exit statement
simple statement 38 6

expression
actual parameters S3 7.3
allocation statement 24 4.4.3
array constructor 33 5.6
assertion 8 3.4
assignment statement 48 6.1
attribute inquiry 25 4.5.3
case statement 43 6.4
constant declaration 16 4.2.1
expression 26 5.2
if statement 42 6.3
location specification 88 12.3
primary 27 5.3
range 14 4.1.7
record or union constructor 32 5.6
referencing form 38 5.3
repeat statement 44 6.5
representational item 79 12.2
set constructor 34 5.6
subtype 12 4.1.6
translation time property 68 11.1.2
type 18 4.1.5
variable declaration 15 4.2.1
waiting Invocation 64 18.5

formal parameters
abbreviation declaration 17 4.4.1
capsule declaration 54 8.1
direct type declaration 28 4.4.2
function declaration 58 7.2
Indirect type declaration 23 4.4.3
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procedure declaration 48 7.1
task declaration 61 18.1

formal translation time properties
abbreviation declaration 17 4.4.1
capsule declaration 54 8.1
direct type declaration 28 4.4.2
function declaration 58 7.2
indirect type declaration 23 4.4.3
needed item 77 11.4procedure declaration 48 7.1
task declaration 61 10.1

function declaration
compound declaration 7 3.3

function invocation primary
constant 29 5.3

generic constraint
generic parameters 70 11.3

generic declaration
declaration 4 3.3

generic parameters
generic declaration 69 11.3

goto statement
simple statement 38 6

guard statement
compound statement 39 6

if statement
compound statement 39 6

Immediate declaration
declaration 4 3.3

Imports
capsule declaration 54 8.1
function declaration so 7.2
procedure declaratlon 48 7.1
task declaration 61 18.1

Indirect type declaration

I
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type declaration 19 4.4.2

location specification
variable declaration 15 4.2.1

needed item
needs 76 11.4

needs
generic declaration 69 11.3

operation generic constraint
generic constraint 71 11.3

pragmat.
pragmats 82 B
token separator B 2.2

pragmats
pragmat token separator L 2.4.2

primary
expression 26 5.2
referencing form 30 5.3
resolved constant 35 5.7

procedure declaration
compound declaration 7 3.3

procedure Invocation statement
simple statement 38 6

raise statement
simple statement 38 6

range
array constructor 33 5.6
case statement 43 6.4
referencing form 30 S.3
subtype 12 4.1.6

record or union constructor
constructor 31 5.6

referencing form
constant 29 5.3
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variable 28 5.3

region statement
compound statement 39 6

repeat statement
compound statement 39 6

representational i tem
representational item 79 12,2
representational specificatlon 78 12.2

representational specification
direct type declaration 28 4.4.2
indirect type declaration 23 4.4.3

reraise statement
simple statement 38 6

resolved constant
constant 29 5.3

return statement
simple statement 38 6

set constructor
constructor 31 G.6

simple statement
unlabeled statement 37 6

statement
body el.ement 3 3.2

subtype
abbreviation declaration 17 4.4.1
attribute inquiry 25 4.5.3
constant declaration 16 4.2.1
direct type declaration 28 4.4.2
formal parameters 52 7.3
function declaration 5o 7.2
indirect type declaration 23 4.4.3
needed item 77 11.4
operation generic constraint 74 11.3.3
repeat statement 44 6.S
resolved constant 35 S.7
subtype 12 4.1.6
subtype comparison 13 4.1.6

-4
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translation time property 68 11.1.2
type 18 4.1.5
value generic constraint 75 11.3.4
variable declaration 1 4.2.1

subtype comparison
expression 26 5.2

subtype generic constraint
generic constraint 71 11.3

task declaration
c,: ipound declaration 7 3.3

task invocation statement
simple statement 38 6

translation time property
actual translation time properties 67 11.1.2
formal translation time properties 66 11.1.7

translation unit

type
abbreviation declaration 17 4.4.1
formal parameters 52 7.3
function declaration s8 7.2
needed item 77 11.4
ope-3tion generic constraint 74 11.3.3
r-jc'ved constant 35 S.7
subty,.i 12 4.1.6
subtype generic constraint 73 11.3.2
translation time property 68 11.1.2
type 18 4.1.6
type comparison 11 4.1.5
value generic constraint 75 11.3.4

type camparisc,.
express i L., 26 5.2

type declaration
deferred declaration 6 3.3

type generic constraint
generic constraint 71 11.3

unlabeled statement
statement 36 6
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user-defined subtype
subtype 12 4.1.6

user-defined type
type 1 4.1.5

value generic constraint
generic constraint 71 11.3

variable
allocation statement 24 4.4.3
assignment statement 40 6.1
primary 27 5.3
region statement 65 13.7
task invocation statement 62 10.1

variable declaration
immediate declaration S 3.3

visible list
capsule declaration 54 8.1

wait statement
compound s ,cement 39 6

waiting invocation
wait statement 63 10.5
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Index

as a definable symbol 13.1
for typ -nd subtype resolution 5.7
user-defined 13.5

& C.7, C.8
,, C.3, C.4
* C.3, C.4
+ C.3, C.4
- C.3, C.4

case range value label 6.4
ENUM 4.3, C.2
INT 4.3, C.3
range 4.1.7

.ALL 4.4.2
accessing dynamic variables 4.4.3
automatically defined for user-defined type 4.4.2, 4.4.3

.TAG
See also TAG

/ C.4

as a terminator 3.2
< C.2, C.3, C.4, C.8, C.9
= C.1, C.2, C.3, C.4, C.5, C.6, C.7, C.8, C.9, C.10, C.11
abbreviation invocation 4.4.1
abbreviation

declaration 4.4.1
invocation 4.4.1
local definitions 7.3
overloading 11

abnormal function 7.2.1
ABS C.3, C.4
ACT 10.1, C.10

assignment & equality 14.5.1
built-in and user-defined 14.5.2
states 14.2.1

activation clock 10.4
activation 10.1

creation of 10.1
termination by exception 9, 9.3

See also task declar.ation
ACTIVE 14.2.1, C.10
actual generic property

See also formal generic property
actual interface 11

See also formal interface
pragmats for B

actual parameters 7.3
used to resolve subtype of formal parameter 4.1.1

See also formal parameters
actual signature 11

See also formal signature
actual translation time property 11, 11.1.2

use of CONST and READONLY formal parameters 7.3
ALL

exporting and exposing ALL 8.2
importing ALL 3.7
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See also .ALL
allocation property 4.4.3
allocation statement 4.4.3

side-effects from 7.2.1
AND C.1, C.9
arithmetic operators 5.2
array constructor 5.6
ARRAY 4.3, C.7

conitructor 5.6
dimension inquiry 4.5.1

ASCII C.15
95 character set 2.1
corresponding enum literals 2.3.8

assembly language
See also foreign code

assertion 3.4
placement in body 3.2

See also type and subtype inquiry
assignable type 4.3

ACT C.10
ARRAY C.7
BOOL C.1
constructors for 5.6
ENUM C.2
FLOAT C.4
INT C.3
MAILBOX C.11
RECORD C.5
required for messages 10.3
SET C.9
STRING C.8
UNION C.6

See also assignment, nonassignable type
assignment statement 6.1
assignment

as a definable symbol 13.1
assignable type 4.3
assignment statement 6.1
automatically defined for user-defined type 4.4.2, 4.4.3
CONST and OUT parameters 7.3
initialization 4.2.1
of mailboxes 14.1.3
sharing assignment for indirect types 4.4.3
usei-defined 13.2

associativity 5.2
attribute

inquiry 4.5.3

available names 3.5
begin statement 6.2
binding 7.3

See also formal parameters
block

See also begin statement
body element 3.2
body 3.2

local definitions 3.3, 4.2.1, 6, 9.1
BOOL 4.3, C.1

expression used in assert statement 3.4
expression used in if statement 6.3
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expression used in WHILE form of repeat statement 6.5
literal 2.3.9
used as generic parameter and as element in interface 11.3.4
used in manifest expressions 5.5

capsule invocation declaration 8
capsule

as separate translation unit 3.1
configuration 12
declaration 8
local definitions 7.3
overloading 11
returning from 6.7
separate translation of 8.1
uses of 4.4, 8, 8.2

case statement 6.4
conditional translation 5.5
user-defined types.In 13.6

character set 2.1
95 to 55 conversion 2.3.1, 2.3.3, 2.3.4, 2.3.6, 2.3.7, 2.3.8

clock 10.4
CLOSE A.1, C.14
CLOSED pragmat B
closed scope .5

abbreviation declaration 4.4.1
capsule declaration 8
deferred declarations 3.3
function declaration 7.2
procedure declaration 7.1
task declaration 10.1
type declaration 4.4.2

CNVT A.3
comment. 2.4.1
common data pools 8.1
component selection 4.3, 5.3

automatically defined for user-defined type 4.4.2, 4.4.3
compound declaration 3.3

capsule declaration 8
function declaration 7.2
procedure declaration 7.1
task declaration 10.1

See also body
compound statement 6

begin statement 6.2
case statement 6.4
guard statement 9.2
if statement 6.3
local definitions 6, 6.5
repeat statement 6.5
reraise statement 9.4

See also body
concatenation 5.2

See also &
conditional message passing 14.1.2
conditional translation 5.5
COND.LOCK 14.4.3, C.13
CONDRECEIVE 14.1.2, C.11
CONDSEND 14.1.2, C.! I
configuration capsule 12
conflicting definitions 3.5, 11.1, 11.3
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conjunction
See also AND

CONST binding 7.3
restriction 4.1.1, 4.4.2, 7.2.1, 13.2, 13.3

constant declaration 4.2.1
pragmats for B

constant 4.2, 4.2.1, 5.3
as data item 5.1
manifest expression 5.5
specifying a subtype for 4.1.1
underlying constant of user-defined type 4.4.2

constraint property 4.1, 4.1.2
constructor 5.4, 5.6

user-defined 5.7, 13.5
CREATE 10.1

scheduling of 14.2.3
critical activation 14.2.2
critical areas 14.2.2
CRITICAL C.10

pragmat for B
dangerous sharing 10.6

pragmat for B
data item 4.1, 4.2
DATA-LOCK 10.7, 14.4.2, C.12
declaration 3.3

See also deferred declaration, immediate declaration
deferred declaration 3.3

abbreviation 4.4.1
abbreviation declaration 4.4.1
capsule declaration 8
formal interface 11.1
function declaration 7.2
generic replication of 11.3
overloading 11
placement in body 3.2
pragmats for B
procedure declaration 7.1
task declaration 10.1
type declaration 4.4.2

deferred unit 3.3
forward reference to 3.6

definable symbol 13.1
defined variable 4.2

as data item 5.1
definition 3.5

declaration 3.3
formal parameter 7.3
generic parameter 11.3
goto label 6
index of a repeat statement 6.5
matching identifier 6
result variable 7.2.1

DELAY-UNTIL C.10
DELAYUNTILINACTIVE C.10
dereference

See also indirect type declaration
direct type declaration 4.4.2
disjunction

See also OR
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DIV C.3
dot selection 5.3

as a definable symbol 13.1
user-defined 13.4

dynamic variable 4.4.3
as data item 5.1

elaboration 3.1
empty body 3.2
EMPTY 14.1.1
EMPTY-SLOTS C.1 I
ENUM 4.3, C.2

components of text files A.1
expression used in components of text files A.3
expression used in FOR form of repeat statement 6.5
literal 2.3.7
used as generic parameter and as element In Interface 11.3.4
used in manifest expressions 5.5
used in strings 2.3.8

EOF A.2, C. 14
equality

of indirect types 4.4.2
of mailboxes 14.1.3
of subtypes 4.1.6, 4.5.1
of types 4.1.5, 4.5.2

See also
error

See also exception, translator warnings
exception declaration 9.1
exception 9.1, D

X=SUBTYPE 4.4.3
XASSERT 3.4
XCASE 6.4
XEMPTYMAILBOX 10.5, C.11
X_EOF C. 14
X_FILE C.14
XFILENAME C.14
XFILEPOS C.14
XFORMAT A.3
XFREE 4.4.3, 12.2
XINIT 4.2.1, 7.2
X_LN C.14
XLOCK C.12
X.MAXRANGE C.3
X_NEGEXP C.3
XNOFILE C.14
XOVERFLOW C.3, C.4
XRANGE C.2, C.3, C.4, C.6
XSUBSCRIPT C.7, C.8
XSUBTYPE 7.3, 11.3.2
XTAG C.6
X_UNHANDLED 9.3
XZERODIVIDE C.3, C.4

EXCESS-LOCKS 14.4.2, C.12
exclusive disjunction

See also XOR
exit statement 6.6

See also matching identifiers
explicit overloading 11.2
exports 8.2
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hiding representation 4.4.2, 4.4.3
See also capsule declaration •

EXPOSE 8
expression 5.2

attribute inquiry 4.5.3
exceptions raised by 9.3

See also manifest expression, operator symbols
EXTERMINATE C.10

ignored in critical areas 14.2.2
external capsules 8.1
FIL.E A.1, C.14

file processing A.2
text files A.3

FILE-RENAME A.2
finalization

automatic for new types 13.3
FIXED 4.3
FLOAT 4.3, C.4

conversions to/from text files A.3
literal 2.3.6
used as generic parameter and as element in interface 11.3.4
used in manifest expressions 5.5

FLOOR C.4
for form of repeat statement 6.5
for variable

See also repeat index
foreign code 12.4
formal interface 11

pragmats for B
representation restriction 12.2

formal parameters 7.3
CONST 7.3
OUT 7.3
READONLY 7.3
specifying a type or subtype for 4.1.1
VAR 7.3

See also aliasing
formal signature 11
formal translation time property 11, 11.1.2
FORMAT A.3
forward reference 3.6
FREE 4.4.3
FULL 14.1.1
FULL-SLOTS C.11

See also side-effects
-function invocation primary 7.2

actual signature -11.1.1
function result variable

See also result variable
function

as generic parameter and as element in interface 11.3.3
as needed name 11.4
declaration 7.2
formal signature 11.1.1
local definitions 7.2, 7.3
overloading I I
returning fron 6.7

garbage collection 4.4.3
generic constraint 11.3
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generic declaration 11.3
local definitions 11.3

generic overloading 11.3
generic parameters 11.3

local definitions 11.4
goto label 6

forward reference to 3.6
goto statement 6.8

See also goto label
guard statement 9.2
guarded body 9.2
handler 9.2
handling an exception 9, 9.3
1/O conversionc A.3
1/O formatting A.3
1/0

high-level A
low-level 14.6
side-effects from 7.2.1

identifier 2.3.4
as a name 3.5

if statement 6.3
conditional translation 5.5

IFLOAT C.3
immediate declaration 3.3

capsule declaration 8
capsule invocation declaration 8.1
constant declaration 4.2.1
exception declaration 9.1
placement in body 3.2
variable declaration 4.2.1
interrupt 14.1.4

imports 3.7
See also capsule declaration, function declaration, procedure declaration, task

declaration
IN C.9
index variable

See also repeat index
INDEXOF 4.5.1, C.7
indirect modification of variables treated as constants 4.2
indirect type declaration 4.4.3
indirect variable 4.4.3
infix operator 5.2
inheritance 11.1
initialization

automatic for new types 13.3
automatic initialization for files A.!
automatic initialization for indirect variables 4.4.3
automatic initialization for multitasking types 10.1, 10.3, 10.4, 10.7
optional for dynamic variables 4.4.3
optional for variables 4.2.1
required for constants 4.2.1

See also assignment
INT 4.3, C.3

expression used in FOR form of repeat statement 6.5
literal 2.3.6
used as generic parameter and as element in interface 11.3.4
used in manifest expressions 5.5

interface 11, 11.1



278 Index RED LRM 8 March 1979

matching rules 11.1
See also actual interface, formal interface, generic property, signature

interrupt 14.1.4
intersection of sets

See also AND
invocation

actual interface 11.1
of abbreviation 4.4.1
of capsule 3.1, 8
of function 7.2
of procedure 7.1
of task 10.1
of type 4.4.2
pragmats for B
terminated by exception 9, 9.3

known in a scope 3.5
label

See also goto label, matching identifiers
LATCH 14.4.3. C.13
lifetime 4.2

data modified by function 7.2.1
of defined variables and constants 5.1
of dynamic variables 4.4.3, 5.1
of local variables of a capsule 8.1
of task 10.1

line of a file A.3
line of input text 2.2
LIST pragmat B
literal 2.3.5, 5.4

manifest 5.5
user-defined 5.7, 13.5

local names 3.5
location 12.3
LOCK 14.4.3, C.12, C.13
logical operators 5.2
LOWSYNCH..AWAIT 14.5.2
LOWSYNCH-RESET 14.5.2
LOW_SYNCH_SIGNAL 14.5.2
LOWSYNCRESET C.10
LOWSYNCSIGNAL C.10
LOWSYNCWAIT C. 10
LOWTASKEND 14.5.2, C.10
machine -dependent

c6nfiguration capsule 12
foreign code 12.4
location 12.3
representation 12.2

MAILBOX 10.3, C.11
assignment and equality 14.1.3
conditional message passing 14.1.2
functions relating to 14.1.1
used for interrupts 14.1.4

main activation 10.1
main capsule 3.1
manifest expression 5.5

used as generic parameter and as element in interface 11.3.4
matching identifiers 6
ME 10.2, 14.5.2, C.10
message passing 10.3
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MOD C.3
mutual exclusion

See also region statement
name scope

See also scope
name

definition of 3.5
exporting of all 8.2
forward reference to 3.6
importing of variable name 3.7
use of 3.5

See also conflicting definitions, definition
needs 11.4
N!L 2.3.10, 4.4.3
NIL-ACT 14.5.1
nonassignable type 4.3

DATA-LOCK C.12
FILE C.14
LATCH C.13

noncritical activation 14.2.2
NONCRITICAL C.10
NONRECURSIVE pragmat B
normal function 7.2.1
NOT C.1, C.9
numeric literal 2.3.6
OK pragmat B
OPEN pragmat B
open scope 3.5

body 3.2
compound statement 6
generic declaration 11.3

OPEN A.1, C.14
operation generic constraint 11.3.3
operator precedence

See also precedence
operator symbol 2.3.2

as a definable symbol 13.1
as a name 3.5, 7.1, 7.2
user-defined 13.2

optimization
by avoiding garbage collection 4.4.2
by restricting formal parameters to subtypes 4.5
by suppressing exceptions 2.4.2
of'CONST formal parareters 7.3
of normal functions 7.2.1

OPTIMIZE pragmat B
OR C., C.9
ordering

See also <
OUT binding 7.3

aliasing warning 4.1.1
restriction 4.1.1, 8, 13.2, 13.3

overloading 1 1
explicit 11, 11.2
generic 11, 11.3
name conflict resolution 11.1

OWNER 14.4.2, C.12
parameter

See also actual parameter, formal parameter
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parenthesized expression 5.3

manifest expression 5.5
pattern declaration 11.3
physical file A.1
pointer

See also indirect type declaration
POS C.2
POSITION A,2, C.I4
pragmat 2.4.2, B
precedence 5.2
PRED C.2, C.3
prefix operator 5,2
primary 5.3
PRIORITY 10.2, C.10

no preemption in critical areas 14.2.2
See also scheduler

procedure invocation statement 7.1
actual signature 11.1.1

procedure
as generic parameter and as element in interface 11.3.3
as needed name 11.4
declaration 7.1
formal signature 11.1.1
local definitions 7.3
overloading 11
returning from 6.7

program 3.1
raise statement 9.3
raising an exception 9
random file A.I
range value label 6.4
range 4.1.7

See also ENUM, FLOAT, INT, range value labelREAD A.2, C.14
READLN A.3, C.14
READONLY binding 7.3

restriction 4.1.1, 7.2.1, 10.1, 13.3
readonly

as data item 5,1
exporting 8.2
exposing 8.1
importing 3.7

real-time clock 10.4
RECEIVE 10.3, C.11
RECEIVE-COMPLETE C.1 I
RECEIVE.REQUEST C. I
RECEIVE-REVOKE C.11
RECEIVEST C.11
RECEIVE-TEST C.1I
record or union constructor 5.6
RECORD .4.3, C.5

constructor 5.6
RECURSIVE pragmat B
referencing form 5,3
region statement 10.7

semantics of 14.4.1
rejoin of activations 10.1
relational operators 5.2
repeat index 6.5
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repeat statement 6.5
user-defined types in 13.7

replacement element 11.3
replication

See also generic declaration
representational item 12.2
representational specification 12.2
reraise statement 9.4

See also raise statement
reserved words 2.3.1
resolution of types and subtypes

resolved constant 5.7
resolved constant 5.7
result variable 7.2
return statement 6.7

subtypes 4.1.6
types 4.1.5

scheduler
built-in 10, 10.2
scheduling algorithm 14.2.3
user-defined 14.5

scope 3.5
See also closed scope, open scope

selection
See also dot selection, subscripting

SEND 10.3, 14.1.2, C.11
SEND-COMPLETE CA I
SEND-REQUEST C.11
SEND-REVOKE C.11
SENDST C. 11
SEND-TEST C.11
separate translation

capsule declaration 8
sequential file A.I
set constructor 5.6
SET 4.3, C.9

constructor 5.6
set operands 5.2

SET-POSITION A.2, C.14
SET-PRIORITY 10.2, C.10
shared variable 10.6

use of CONST and READONLY formal parameters 7.3
short circuiting

See also AND, OR
side-effects 7.2.1
signature 11, 11.1.1
simple statement 6

allocation statement 4.4.3
assignment statement 6.1
exit statement 6.6
gote statement 6.8
procedure invocation statement 7.1
raise statement 9.3
return statement 6.7
task invocation statement 10.1

single value label 6.4
SIZE A.2, C.14
SIZELN A.3, C.14
special symbols 2.3.3
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standard file A.1
statement 6

allocation statement 4.4.3
assignment statement 6.1
begin statement 6.2
case statement 6.4
exit statement 6.6
goto statement 6.8
if statement' 6.3
placement in body 3.2
procedure invocation statement 7.1
raise statement 9.3
region statement 10.7
repeat statement 6.5
reraise statement 9.4
return statement 6.7
task invocation statement 10.1
wait statement 10.5

STRING 4.3, C.8
literal 2.3.8
used as generic parameter and as element in interface 11.3.4
used in manifest expressions 5.5

See also ENUM
subscripting 5.3

as a definable symbol 13.1
user-defined 13.4

subtype comparison 4.1.6
subtype equality 4.5.1
subtype generic constraint 11.3.2
subtype inquiry 4.5.1

subtype 4.1, 4.1.6
abbreviating 4.4.1
as generic Oarameter and as element in interface 11.3.2
attribute inquiry 4.5.3
brief description 4.3
equality 4.1.6, 4.5.1
inquiry 4.5.1
of user-defined 4.4.2
relation to type 4.1.3
resolution in manifest expression or constructor 5.7
specifying 4.1.2
underlying subtype of user-defined subtype 4.4.2
use of 4.1.1

SUBTYPEOF 4.5.1
SUCC C.2, C.3
SUPPRESS pragmat B
SUSPEND 14.2.1, C.10
SUSPENDED 14.2.1, C.10
SYNCH-AWAIT 14.5.2
SYNCH-RESET 14.5.2
SYNCH-SIGNAL 14.5.2
SYNC.RESET C.10
SYNC-SIGNAL C.10
SYNC-WAIT C.10
SYS-IN A.3
SYS-OUT A.3
tag

See also UNION
user-defined 14.5.3
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See also activation
task invocation statement 10.1

actual signature 11.1.1
task

as generic parameter and as element in interface 11.3.3
as needed name 11.4
formal signature 11.1.1
local definitions 7.3
ov6rloading 11
returninf, from 6.7

TASK-END 14.5.2, C.10
TASK-START C.10

as data item 5.1
terminator ; 3.2
text file A.1, A.',
text 2.1
TIME C.10
token separator 2.2, 2.4
token 2.2
translation environment 3.1

all generic properties 11.1.2
all interface matching 11.1

translation time property 11, 11.1.2
translation unit 3.1
translation-time known

all manifest expressions 5.5
all type checking 4.1.1, 73
all type properties 4.1
some constraint properties 4.1

translator errors
See also exception

translator warnings
from assertion statement 3.4
from dangerous sharing 10.6
from exceptions always being raised 9.3

type checking 4.1.1, 7.3
type comparison 4.1.5

overloading 11
type equivalence 4.1.5
type generic constraint 11.3.1
type inquiry 4.5.2
type property 4.1, 4.1.2
type 4.1, 4.1.5, 4.4.2

abbreviating 4.4.1
as generic parameter and as element in Interface 11.3.1
brief description 4.3
declaration 4.4.2
equality 4.1.5, 4.5.2
inquiry 4.5.2
local definitions 7.3
relation to subtype 4.1.3
representation 12.2
resolution in manifest expression or constructor 5.7
specifying 4.1.2
underlying type of user-defined type 4.4.2
use of 4.1.1
user-defined 4.4.2

TYPEOF 4.5.2
underlying subtype or type 4.4.2
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underlying variable or constant 4.4.2
See also .ALL

union of sets
See also OR

UNION 4.3, C.6
conditional translation 5.5
constructor 5.6

See also assignment
unlabeled statement 6
UNLOCK 14.4.3, C.12, C.13
UNSUSPEND 14.2.1, C.10
use of a name 3.5
user-defined subtype 4.4.2
user-defined type 4.4.2

used in case statement 13.6
used in repeat statement 13.7
restriction 4.4.1, 4.4.3

value generic constraint 11.3.4
manifest expressions 5.5

value labels 6.4
VAR binding 7.3

restriction 4.1.1, 10.1, 13.3
variable declaration 4.2.1

pragmats for B
variable 4.2, 5.3

dynamic 4.4.3
importing variables 3.7
indirect 4.4.3
location 12.3
passed to VAR and OUT formal parameters 7.3
readonly 5.1
shared 10.6
side-effects from modification 7.2.1
specifying a subtype for 4.1.!
underlying variable of user-del 'pe 4.4.2

See also closed scope
variant record

See also UNION
wait statement 10.5

avoiding busy waiting 10.3
expansion of 14.3.3

WAITING function 14.2.1, C.10
waiting invocation 10.5

synbhronizing operation's for 14.3.1
waiting

for space in mailbox for message 10.3
for unlocking of region 10.7
latches using busy waiting 14.4.3
wait statement 10.5

warning
See also translator warnings

w hile form of repeat statement 6.5
WRITE A.2, C.14
WRITELN A.3, C.14
XOR C.1, C.9
XASSERT 3.4
XCASE 6.4
X.EMPTYMAILBOX 10.5, C.11
XEOF C.14
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XFILE C.14
XFILENAME C.14
XFILEPOS C.14
X_FORMAT A.3
XFREE 4.4.3, 12.2
XINIT 4.2.1, 7.2
X_LN C.14
XLOCK C.12
XMAXRANGE C.3
XNEGEXP C.3
X_NOFILE C.14
XOVERFLOW C.3, C.4
XRANGE C.2, C.3, C.4, C.6
XSUBSCRIPT C.7, C.8
X_SUBTYPE 4.4.3, 7.3, 11.3.2
XTAG C.6
XUNHANDLED 9.3
X._ZERO__DIVIDE C.3, C.4


